
More robust I2C designs with a new fault-injection driver

Wolfram Sang, Consultant / Renesas

ELCE17

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 1 / 24

Motivation

It really got personal…
I2C maintainer since 2012
encountered similar type of problems handling rare error cases in I2C
master drivers again and again
myself unsure how drivers for Renesas I2C IP cores behaved

… so as a first step
reproducible way to generate test cases was desired!

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 2 / 24

Introduction: sigrok

Figure 1: https://www.sigrok.org

The sigrok project aims at creating a portable, cross-platform,
Free/Libre/Open-Source signal analysis software suite that
supports various device types (e.g. logic analyzers, oscilloscopes,
and many more).1

1from their website
Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 3 / 24

https://www.sigrok.org

Introduction: sigrok II

Features & Design goals2

Broad hardware support
logic analyzers, oscilloscopes, multimeters, data loggers etc.
Cross-platform
Scriptable protocol decoding
stackable, Python3
File format support
binary, ASCII, hex, CSV, gnuplot, VCD, WAV, …
Reusable libraries
libsigrok, libsigrokdecode
Various frontends
PulseView (LA GUI), sigrok-meter (DMM GUI), sigrok-cli

2from their website, slightly shortened
Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 4 / 24

Setup for sigrok

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 5 / 24

Live demo setup

Click here and there until everything works :)

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 6 / 24

Some basics: about START and STOP

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 7 / 24

Definitions of ‘message’ and ‘transfer’

transfer everything between START and STOP
message everything between START or REP_START and STOP or

REP_START

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 8 / 24

Live demo 1

Difference between STOP+START vs. REP_START on the wire

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 9 / 24

It really happens!

From: Giuseppe Cantavenera <...>
Subject: Re: [PATCH] i2c-cadence: fix repeated start in

message sequence

...
Sadly, it would have saved our team weeks of investigation
on a major issue if we had noticed before, but that's our
problem :(
...

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 10 / 24

How to debug error cases?

Cases of interest
stalled bus!

SDA stuck low
SCL stuck low

arbitration lost
faulty bits

Those usually happen rarely. Even if, often hard to reproduce.

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 11 / 24

Solution: fault-injector

GPIOs driven by extended i2c-gpio driver

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 12 / 24

GPIO based I2C fault injector

Implementation details
currently compiled-in extension to i2c-gpio driver
might be refactored to an additional module if it grows too large
controlled by files in debugfs

if you don’t know it already, super-convenient for such cases. Much
better than sysfs!

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 13 / 24

Error case: SDA held low by a device

How it can happen
Handover between bootloader and Kernel during a transfer
Watchdog resets system during a transfer
Device got stuck

What it means
SCL high, SDA low (held by the client device) → bus not free

How it is simulated
address phase to a known client is started
when client acks its presence we stop clocking SCL

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 14 / 24

Live demo 2

Incomplete transfer to
the PMIC
the audio codec

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 15 / 24

I2C bus recovery

I2C specs have a solution for this (Revision 6, Chapter 3.1.16):
If the data line (SDA) is stuck LOW, the master should send
nine clock pulses. The device that held the bus LOW should
release it sometime within those nine clocks. If not, then use the
HW reset or cycle power to clear the bus.

The Linux Kernel has support for that
populate a bus_recovery_info structure
generic helpers if SCL/SDA are controllable
generic helpers if you want to use GPIOs

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 16 / 24

Live demo 3

Incomplete transfer to the audio codec using another I2C IP core

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 17 / 24

When to not use bus recovery

Not suitable when
SDA is not low
you should try emitting a STOP
the transfer timed out
could happen because device is busy
Problem! I2C has no timeouts defined. SMBus has.
SCL is stuck low
we’ll talk about that very soon

so
only when SDA is stuck low at the beginning of a transfer

sometimes doing $RANDOM things will recover a device for you. But
$RANDOM might break things for other users randomly.

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 18 / 24

Error case: SCL held low by a device

How it can happen
Device got stuck

What it means
SCL low (held by the client device), SDA doesn’t really matter → bus
not free and we cannot clock SCL

How it is simulated
SCL is pinned low by the GPIO

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 19 / 24

Live demo 4

pinning SCL low

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 20 / 24

Solution is to reset

I2C specs also have a solution for this (Revision 6, Chapter 3.1.16):
In the unlikely event where the clock (SCL) is stuck LOW, the
preferential procedure is to reset the bus using the HW reset
signal if your I2C devices have HW reset inputs. If the I2C
devices do not have HW reset inputs, cycle power to the devices
to activate the mandatory internal Power-On Reset (POR)
circuit.

not much we can do
return -EBUSY and let the client driver handle the necessary steps

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 21 / 24

Outlook

add some more failure cases
arbitration lost
hold SDA low for a while once we detect START
SDA stuck low without external device
hold SDA low until we counted some SCL pulses
insert some faulty bits
could be used to check PEC bytes

decide whether to use add-on module
all this extra code might bloat the core driver source

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 22 / 24

Summary

What has been shown:
I2C can be measured without much effort and cost
really easy to detect incorrect sequences
faults can be injected via an extended i2c-gpio driver
I2C host drivers can then be checked against that
when to use bus recovery and when not

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 23 / 24

Let’s do good engineering :)

Thank you!
Questions?

Right here, right now…
Later at the conference
wsa@the-dreams.de

And thanks again to Renesas for funding this work!

Wolfram Sang, Consultant / Renesas Robust I2C with fault-injection ELCE17 24 / 24

mailto:wsa@the-dreams.de

