
1

Power Management, Debugging and
Optimizations

• Avinash Mahadeva
• Vishwanath Sripathy

2

Contents

• Introduction

• Architecture
– Hardware
– Software

• Common Problems encountered

• Debugging

• Optimizations

3

Introduction

Why Power Management
– To maximize the battery life of handheld devices.
– Limit the Power consumption to the minimum without taking a hit on

performance.
– Run each usecase with the minimum power consumed and expected

performance.

4

Types of Power Management

• Active / Dynamic Power Management
– When system is active and performing tasks.
– Clocks are on and processing is going on.
– Ex: Mp3 playback / AV playback.

• Standby / Static Power Management
– System is idle and no task is performed.
– Modules are not active.
– No activity is performed.
– Ex: Phone left idle, Screen blank and no activity.

5

Hardware Architecture in SOCs

• How hardware is organized ?
– Module clocks : ON, OFF

– Clock domains : ON, OFF

– Power domains : ON, CSWR, OSWR, OFF

– Voltage domains : Active, Retention, Off

• Ex: In OMAP
– VDD_CORE_L

– PD_L4_PER

– CD_L4_PER

– GPIO, GPTIMER, MMC

Clock
Domain 1

Power Domain

CLK

Clock
Domain 2

VDD

Voltage
Control

Voltage Domain VDD

Voltage
Regulator

6

Software Power Management Techniques

• Standby Power Management
– Suspend Resume

– CpuIdle
• Dynamic Clock Switching
• Dynamic Power Switching.
• Aggressive clock cutting.

– Turn off as many devices as possible when not used.

• Active Power Management
– Dynamic Frequency and Voltage Scaling.

• Multiple Operating Performance Point (V, F)
• Ex: CORE OPPs in OMAP 4430

– OPP1 (0.962V, 100MHz)
– OPP2 (1.127V, 200MHz)

– Adaptive Voltage Scaling.

7

How does it look together

High
performance

Medium
performance

Low
Performance

Zero
Performance

Adaptive Voltage Scaling (AVS) Only

Adaptive Voltage Scaling (AVS)
&

Dynamic Power Switching (DPS)

Standby Leakage Management (SLM)

Application
Performance

OPP4 (V4, F4)

OPP1 (V1, F1)

OPP3 (V3, F3)

OPP2 (V2, F2)

Adaptive Voltage Scaling (AVS)
&

Dynamic Voltage & Frequency Scaling (DVFS)
&

Dynamic Power Switching (DPS)

NOTE: OPP is “Operating Performance Point”

8

Common Problems Encountered

• Functionality after Low power mode. (Retention, OFF)

• Performance drop with Power Mangement.

• Aborts and Crashes.

• Random Hangs and Reboots.

• Regression with PM enabled.

• And the list continues

9

Debugging in Software

• Prints
– Simple to use.
– Difficult to put code in recurring code, gets flooded and may not be able to print all times

(when UART clocks cut).

• Spinloops
– while(1) during boot, after waking from OFF.
– Needed when onchip breakpoints are lost. (many times from OFF)
– Attach, Break using Lauterbach and print register dumps

• Persistent Memory can be used to log counters.
– SAR memory in OMAP is not lost in OFF mode.
– Persistent memory tracing.

• Sysfs and debugfs entries
– cat /sys/devices/system/cpu/cpu0/cpufreq/*
– cat /sys/devices/system/cpu/cpu0/cpuidle/state*/*
– cat /debug/pm_debug/*

10

Debugging in Hardware

• Probing using Oscilloscope, LA
– Voltages.

• Useful to check if appropriate voltage is supplied as desired.
• Helpful to capture any shootups or variations.

– Clocks.
• Can check if Clocks are turned on or not.
• Can verify the rate of the clocks.

• Triggers in Oscilloscope can be very useful.

• Few of the signals are available at Testpoints, others may need mod.

11

HWOBS1: What it is ?

• Hardware and Observability signals in OMAP.

• Nearly 500 internal omap signals can be brought out on 32 pins.
– hw_obs0 to hw_obs31
– settings

• padmux to bring hw_obs signals
• mux configuration to bring out appropriate signals at pads.

– Tie High, Tie Low settings are available – helps to verify the setup and wirings.
– Various signals including

• Clocks and DPLL outputs.
• Reset signals
• Standby, IdleRequests, IdleAcks for various modules
• Powerdomain FSMs for almost all powerdomains
• IRQs
• EMIF, Cache controller signals.

12

HWOBS2: signals during a crash

13

Lauterbach
– Very Powerful JTAG debuggger.
– Step, run through the code with viewing stack.
– Has Linux Awareness
– Can get Register dumps (CPU, IO mapped device)
– SpotLight : Can be used to find memory corruptions; SAVE – RESTORE comparision

• data.dump 0x4809C200--0x4809C290 /SpotLight /WIDTH 2 (MMC1 registers)
• Stop once after saving and once after Restoring.
• Before Off mode. After Off mode.

14

Lauterbach - 2

• Very useful to find regressions when PM enabled.

• Comparing register dumps in both working and non working cases
gives a good hint.

– printer.file ~/working.txt
– winprint per.view peromap4430.per
– Enable PM (reproduce regression)
– printer.file ~/non.working.txt
– winprint per.view peromap4430.per
– diff -U 1 ~/working.txt ~/non.working.txt

15

Embedded Trace Macrocell

• Very Powerful Hardware Tracer.
• Useful for profiling and debugging random

lockups, crashes.
• On a 512M ETM, can capture upto 40s of

activity. Can increase by limiting the code
section which needs to be monitored.

16

Things are not that simple sometimes:

• Sometimes extremely difficult

• Logical debugging is the key.

• Eliminate the suspects to narrow down.
– Disable CpuIdle or Disable DVFS to check issue
– If CpuIdle

• Narrow down C states
• only in 1 or across all
• RET or OFF.

– If DVFS
• Eliminate OPPs
• In 1 OPP or across All.
• Disable smartreflex

17

Optimizations:

• Even with Lowpower support, Power numbers are not better. Why ?

• May be you are entering Lowpower very often.

• Profiling needs to be done for few critical sections:
– GPIO toggling

• Set and Clear gpios. (Ex: Request in driver for clk enable; Till clock enabled)
• Accurate since no SW delay involved and Non Intrusive.
• But difficult to average and get min, max, avg values.

– ktime_t, ktime_get
• Lot of processing APIs present. (ktime_sub, ktime_to_timespec)
• Based on kernel ticktimers (GPT1), which is lost in OFF mode. Hence may be inaccurate

sometimes and intrusive

– 32KHz counter in wkup domain
• Retained in offmode.
• Can read 32K counters at appropriate instances.
• Overflows in 36hours (2^32 / 2^15 / 60 / 60) and intrusive

18

All modules need not be active at all time:

• Modules involved in Mp3 playback scenario
– MMC, IVA, sDMA, McBSP/McPDM, TWL audio codec.

• Stages
– Data Fetch : MMC
– Data processing (decoding) : IVA
– Data transfer (sDMA fills McBSP FIFO) : sDMA, McBSP
– Data send out MsBSP/McPDM to TWL audio codec) : McBSP, Codec

• Do the best you can in what you have: Ex – MMC in Mp3
– The inactivity time is less.
– Turning off the LDOs is not possible. (latency in seconds).
– Just cut the clocks.
– Will have significant savings.

19

Idle scenarios

• See to it that appropriate C states are hit as expected.

• Ex: OSIdle (Phone idle, Screen on) – 5 seconds
– [bb]root@android $ cat /sys/devices/system/cpu/cpu0/cpuidle/state*/desc

• CPU WFI
• CPUs OFF, MPU + CORE INA
• CPUs OFF, MPU + CORE CSWR
• CPUs OFF, MPU + CORE OSWR

– [bb]root@android $
– [bb]root@android $ cat /sys/devices/system/cpu/cpu0/cpuidle/state*/usage ; sleep 5 ; cat

/sys/devices/system/cpu/cpu0/cpuidle/state*/usage
• 320183
• 1495
• 22738
• 50017

• 321292
• 1501
• 22785
• 50118

– [bb]root@android $

20

Interrupts:

• Too many interrupts wakes the system often

• Might spend less time than expected in Low power state. (More power consumption)

• Ex: During OSIdle (Phone Idle, Screen ON)
– $
– $ cat /proc/interrupts | grep i2c ; sleep 5 ; cat /proc/interrupts | grep i2c

• 88: 1595 0 GIC omap_i2c
• 89: 891 0 GIC omap_i2c
• 93: 927 0 GIC omap_i2c
• 94: 1545736 0 GIC omap_i2c
• 88: 1595 0 GIC omap_i2c
• 89: 891 0 GIC omap_i2c
• 93: 927 0 GIC omap_i2c
• 94: 1547174 0 GIC omap_i2c

– $

• ~1500 interrupts in 5 seconds. Is this expected ?

21

Tools:

• Powertop

• Powerdebug

22

Powertop

• Nice tool from www.lesswatts.org
– git://git.kernel.org/pub/scm/status/powertop/powertop.git

– git://git.linaro.org/tools/powertop.git

• Can get Idlestats (C state stats) and Freq stats(P state stats)
– CPU_FREQ_STAT, CPU_FREQ_STAT_DETAILS should be enabled

23

Powerdebug

• Nice tool from linaro for clock, regulator, sensor.
– http://git.linaro.org/gitweb?p=tools/powerdebug.git;a=summary

• Settings:
– export TERM=xterm
– export TERMINFO=/system/etc/terminfo

• Ex1: find partents of a clock

• [bb]root@android $ powerdebug -p mmc4_fck
Parents for "mmc4_fck" Clock :
/
 `-- virt_38400000_ck (flags:0x0, usecount:1, rate: 36 MHZ)
 `-- sys_clkin_ck (flags:0x30611000, usecount:5, rate: 36 MHZ)
 |-- dpll_per_ck (flags:0x0, usecount:1, rate: 732 MHZ)
 | `-- dpll_per_x2_ck (flags:0x815020, usecount:1, rate: 1 GHZ)
 | |-- dpll_per_m2x2_ck (flags:0x815000, usecount:2, rate: 183 MHZ)
 | | |-- func_48m_fclk (flags:0x810800, usecount:2, rate: 45 MHZ)
 | | | |-- mmc4_fck (flags:0x0, usecount:0, rate: 45 MHZ)
• [bb]root@android $

24

Powerdebug - 2

• Ex2: To find change in power states after an event.
– After an MMC insertion

• powerdebug -d > before.mmc.txt
• Insert MMC card
• powerdebug -d > after.mmc.txt
• [bb]root@android $ diff -U 1 before.mmc.txt after.mmc.txt

--- before.mmc.txt
+++ after.mmc.txt
@@ -28,7 +28,7 @@
 name: VMMC
- status: off
- state: disabled
+ status: normal
+ state: enabled
 type: voltage
- num_users: 0
- microvolts: 1800000
+ num_users: 1
+ microvolts: 3000000
 max_microvolts: 3000000

25

Powerdebug - 3

• Ex2: continued
@@ -295,3 +295,3 @@
 | | `-- gpu_fck (flags:0x922000, usecount:0, rate: 146 MHZ)
- | |-- dpll_per_m2x2_ck (flags:0x815000, usecount:1, rate: 183 MHZ)
+ | |-- dpll_per_m2x2_ck (flags:0x815000, usecount:2, rate: 183 MHZ)
 | | |-- func_12m_fclk (flags:0x0, usecount:0, rate: 11 MHZ)
@@ -299,3 +299,3 @@
 | | |-- hsi_fck (flags:0x933800, usecount:0, rate: 183 MHZ)
- | | |-- func_96m_fclk (flags:0x810800, usecount:0, rate: 91 MHZ)
+ | | |-- func_96m_fclk (flags:0x810800, usecount:2, rate: 91 MHZ)
 | | | |-- mcasp2_fclk (flags:0x0, usecount:0, rate: 91 MHZ)
@@ -309,7 +309,7 @@
 | | | | `-- mcbsp4_fck (flags:0x94e000, usecount:0, rate: 91 MHZ)
- | | | |-- mmc1_fck (flags:0x932800, usecount:0, rate: 91 MHZ)
- | | | `-- mmc2_fck (flags:0x933000, usecount:0, rate: 91 MHZ)
+ | | | |-- mmc1_fck (flags:0x932800, usecount:1, rate: 91 MHZ)
+ | | | `-- mmc2_fck (flags:0x933000, usecount:1, rate: 91 MHZ)
 | | |-- func_24mc_fclk (flags:0x0, usecount:0, rate: 22 MHZ)
 | | | `-- slimbus2_fclk_0 (flags:0x0, usecount:0, rate: 22 MHZ)
- | | |-- func_48m_fclk (flags:0x810800, usecount:2, rate: 45 MHZ)
+ | | |-- func_48m_fclk (flags:0x810800, usecount:3, rate: 45 MHZ)
 | | | |-- mcspi1_fck (flags:0x0, usecount:0, rate: 45 MHZ)
@@ -322,3 +322,3 @@
 | | | |-- ocp2scp_usb_phy_phy_48m (flags:0x0, usecount:1, rate: 45 MHZ)
- | | | |-- uart1_fck (flags:0x0, usecount:0, rate: 45 MHZ)
+ | | | |-- uart1_fck (flags:0x0, usecount:1, rate: 45 MHZ)
 | | | |-- uart2_fck (flags:0x0, usecount:0, rate: 45 MHZ)

[bb]root@android $

26

Winding up:

• Thanks to:
– Texas Instruments – for employing me and sponsoring me
– Wonderful Engineers at TI and in the community, from whom I keep learning

everyday.

• Questions ??

• Contact
– avinashhm@ti.com
– vishwanath.bs@ti.com

• Thank you All.

mailto:avinashhm@ti.com
mailto:vishwanath.bs@ti.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

