
1

Power Management, Debugging and 
Optimizations

• Avinash Mahadeva
• Vishwanath Sripathy 



2

Contents

• Introduction

• Architecture
– Hardware
– Software

• Common Problems encountered

• Debugging

• Optimizations



3

Introduction

Why Power Management
– To maximize the battery life of handheld devices.
– Limit the Power consumption to the minimum without taking a hit on 

performance.
– Run each usecase with the minimum power consumed and expected 

performance.



4

Types of Power Management

• Active / Dynamic Power Management
– When system is active and performing tasks.
– Clocks are on and processing is going on.
– Ex: Mp3 playback / AV playback.

• Standby / Static Power Management
– System is idle and no task is performed.
– Modules are not active.
– No activity is performed.
– Ex: Phone left idle, Screen blank and no activity.
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Hardware Architecture in SOCs

• How hardware is organized ?
– Module clocks  : ON, OFF

– Clock domains   : ON, OFF

– Power domains : ON, CSWR, OSWR, OFF

– Voltage domains : Active, Retention, Off

• Ex: In OMAP
– VDD_CORE_L

– PD_L4_PER

– CD_L4_PER

– GPIO, GPTIMER, MMC

Clock
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Software Power Management Techniques

• Standby Power Management 
– Suspend Resume

– CpuIdle
• Dynamic Clock Switching
• Dynamic Power Switching.
• Aggressive clock cutting.

– Turn off as many devices as possible when not used.

• Active Power Management
– Dynamic Frequency and Voltage Scaling.

• Multiple Operating Performance Point (V, F)
• Ex: CORE OPPs in OMAP 4430

– OPP1 (0.962V, 100MHz)
– OPP2 (1.127V, 200MHz)

– Adaptive Voltage Scaling.
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How does it look together
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Common Problems Encountered

• Functionality after Low power mode. (Retention, OFF)

• Performance drop with Power Mangement.

• Aborts and Crashes.

• Random Hangs and Reboots.

• Regression with PM enabled.

• And the list continues 
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Debugging in Software

• Prints
– Simple to use.
– Difficult to put code in recurring code, gets flooded and may not be able to print all times 

(when UART clocks cut).

• Spinloops
– while(1) during boot, after waking from OFF.
– Needed when onchip breakpoints are lost. (many times from OFF)
– Attach, Break using Lauterbach and print register dumps

• Persistent Memory can be used to log counters. 
– SAR memory in OMAP is not lost in OFF mode.
– Persistent memory tracing.

• Sysfs and debugfs entries
– cat /sys/devices/system/cpu/cpu0/cpufreq/*
– cat /sys/devices/system/cpu/cpu0/cpuidle/state*/*
– cat /debug/pm_debug/*
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Debugging in Hardware

• Probing using Oscilloscope, LA
– Voltages.

• Useful to check if appropriate voltage is supplied as desired.
• Helpful to capture any shootups or variations.

– Clocks.
• Can check if Clocks are turned on or not.
• Can verify the rate of the clocks.

• Triggers in Oscilloscope can be very useful.

• Few of the signals are available at Testpoints, others may need mod.
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HWOBS1: What it is ?

• Hardware and Observability signals in OMAP.

• Nearly 500 internal omap signals can be brought out on 32 pins. 
– hw_obs0 to hw_obs31
– settings

• padmux to bring hw_obs signals
• mux configuration to bring out appropriate signals at pads.

– Tie High, Tie Low settings are available – helps to verify the setup and wirings.
– Various signals including

• Clocks and DPLL outputs.
• Reset signals
• Standby, IdleRequests, IdleAcks for various modules
• Powerdomain FSMs for almost all powerdomains
• IRQs
• EMIF, Cache controller signals.
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HWOBS2: signals during a crash
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Lauterbach
– Very Powerful JTAG debuggger.
– Step, run through the code with viewing stack.
– Has Linux Awareness
– Can get Register dumps (CPU, IO mapped device)
– SpotLight : Can be used to find memory corruptions; SAVE – RESTORE comparision

• data.dump 0x4809C200--0x4809C290 /SpotLight /WIDTH 2 (MMC1 registers)
• Stop once after saving and once after Restoring.
• Before Off mode. After Off mode.
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Lauterbach - 2

• Very useful to find regressions when PM enabled.

• Comparing register dumps in both working and non working cases 
gives a good hint.

– printer.file ~/working.txt
– winprint per.view peromap4430.per
– Enable PM (reproduce regression)
– printer.file ~/non.working.txt
– winprint per.view peromap4430.per
– diff -U 1 ~/working.txt ~/non.working.txt
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Embedded Trace Macrocell

• Very Powerful Hardware Tracer.
• Useful for profiling and debugging random 

lockups, crashes.
• On a 512M ETM, can capture upto 40s of 

activity.  Can increase by limiting the code 
section  which needs to be monitored.
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Things are not that simple sometimes:

• Sometimes extremely difficult

• Logical debugging is the key.

• Eliminate the suspects to narrow down.
– Disable CpuIdle or Disable DVFS to check issue
– If CpuIdle

• Narrow down C states
• only in 1 or across all
• RET or OFF.

– If DVFS
• Eliminate OPPs
• In 1 OPP or across All.
• Disable smartreflex
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Optimizations:

• Even with Lowpower support, Power numbers are not better. Why ?

• May be you are entering Lowpower very often.

• Profiling needs to be done for few critical sections:
– GPIO toggling

• Set and Clear gpios. (Ex: Request in driver for clk enable; Till clock enabled)
• Accurate since no SW delay involved and Non Intrusive.
• But difficult to average and get min, max, avg values.

– ktime_t, ktime_get
• Lot of processing APIs present. (ktime_sub, ktime_to_timespec)
• Based on kernel ticktimers (GPT1), which is lost in OFF mode.  Hence may be inaccurate 

sometimes and intrusive

– 32KHz counter in wkup domain
• Retained in offmode.
• Can read 32K counters at appropriate instances.
• Overflows in 36hours (2^32 / 2^15 / 60 / 60 ) and intrusive
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All modules need not be active at all time:

• Modules involved in Mp3 playback scenario
– MMC, IVA, sDMA, McBSP/McPDM, TWL audio codec.

• Stages
– Data Fetch : MMC
– Data processing (decoding) : IVA
– Data transfer (sDMA fills McBSP FIFO) : sDMA, McBSP
– Data send out MsBSP/McPDM to TWL audio codec) : McBSP, Codec

• Do the best you can in what you have: Ex – MMC in Mp3 
– The inactivity time is less.
– Turning off the LDOs is not possible. (latency in seconds).
– Just cut the clocks.
– Will have significant savings.
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Idle scenarios

• See  to it that appropriate C states are hit as expected.

• Ex: OSIdle (Phone idle, Screen on) – 5 seconds
– [bb]root@android $ cat /sys/devices/system/cpu/cpu0/cpuidle/state*/desc

• CPU WFI
• CPUs OFF, MPU + CORE INA
• CPUs OFF, MPU + CORE CSWR
• CPUs OFF, MPU + CORE OSWR

– [bb]root@android $
– [bb]root@android $ cat /sys/devices/system/cpu/cpu0/cpuidle/state*/usage ; sleep 5 ; cat 

/sys/devices/system/cpu/cpu0/cpuidle/state*/usage
• 320183
• 1495
• 22738
• 50017

• 321292
• 1501
• 22785
• 50118

– [bb]root@android $
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Interrupts:

• Too many interrupts wakes the system often

• Might spend less time than expected in Low power state. (More power consumption)

• Ex: During OSIdle (Phone Idle, Screen ON)
– $
– $ cat /proc/interrupts | grep i2c ; sleep 5 ; cat /proc/interrupts | grep i2c

•  88:       1595         0       GIC  omap_i2c
•  89:        891          0       GIC  omap_i2c
•  93:        927          0       GIC  omap_i2c
•  94:    1545736      0       GIC  omap_i2c
•  88:       1595         0       GIC  omap_i2c
•  89:        891          0       GIC  omap_i2c
•  93:        927          0       GIC  omap_i2c
•  94:    1547174      0       GIC  omap_i2c

– $

• ~1500 interrupts in 5 seconds. Is this expected ?
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Tools:

• Powertop

• Powerdebug
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Powertop

• Nice tool from www.lesswatts.org 
– git://git.kernel.org/pub/scm/status/powertop/powertop.git 

– git://git.linaro.org/tools/powertop.git

• Can get  Idlestats (C state stats) and Freq stats(P state stats)
– CPU_FREQ_STAT, CPU_FREQ_STAT_DETAILS should be enabled
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Powerdebug

• Nice tool from linaro for clock, regulator, sensor.
– http://git.linaro.org/gitweb?p=tools/powerdebug.git;a=summary

• Settings:
– export TERM=xterm
– export TERMINFO=/system/etc/terminfo

• Ex1: find partents of a clock

• [bb]root@android $ powerdebug -p mmc4_fck
Parents for "mmc4_fck" Clock :
/
 `-- virt_38400000_ck (flags:0x0, usecount:1, rate: 36 MHZ)
     `-- sys_clkin_ck (flags:0x30611000, usecount:5, rate: 36 MHZ)
        |-- dpll_per_ck (flags:0x0, usecount:1, rate: 732 MHZ)
        |    `-- dpll_per_x2_ck (flags:0x815020, usecount:1, rate: 1 GHZ)
        |       |-- dpll_per_m2x2_ck (flags:0x815000, usecount:2, rate: 183 MHZ)
        |       |   |-- func_48m_fclk (flags:0x810800, usecount:2, rate: 45 MHZ)
        |       |   |   |-- mmc4_fck (flags:0x0, usecount:0, rate: 45 MHZ)
• [bb]root@android $
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Powerdebug - 2

• Ex2: To find change in power states after an event.
– After an MMC insertion

• powerdebug -d > before.mmc.txt
• Insert MMC card
• powerdebug -d > after.mmc.txt
• [bb]root@android $ diff -U 1 before.mmc.txt after.mmc.txt

--- before.mmc.txt
+++ after.mmc.txt
@@ -28,7 +28,7 @@
        name: VMMC
-       status: off
-       state: disabled
+      status: normal
+      state: enabled
        type: voltage
-       num_users: 0
-       microvolts: 1800000
+      num_users: 1
+      microvolts: 3000000
        max_microvolts: 3000000
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Powerdebug - 3

• Ex2: continued
@@ -295,3 +295,3 @@
         |       |    `-- gpu_fck (flags:0x922000, usecount:0, rate: 146 MHZ)
-        |       |-- dpll_per_m2x2_ck (flags:0x815000, usecount:1, rate: 183 MHZ)
+       |       |-- dpll_per_m2x2_ck (flags:0x815000, usecount:2, rate: 183 MHZ)
         |       |   |-- func_12m_fclk (flags:0x0, usecount:0, rate: 11 MHZ)
@@ -299,3 +299,3 @@
         |       |   |-- hsi_fck (flags:0x933800, usecount:0, rate: 183 MHZ)
-        |       |   |-- func_96m_fclk (flags:0x810800, usecount:0, rate: 91 MHZ)
+       |       |   |-- func_96m_fclk (flags:0x810800, usecount:2, rate: 91 MHZ)
         |       |   |   |-- mcasp2_fclk (flags:0x0, usecount:0, rate: 91 MHZ)
@@ -309,7 +309,7 @@
         |       |   |   |    `-- mcbsp4_fck (flags:0x94e000, usecount:0, rate: 91 MHZ)
-        |       |   |   |-- mmc1_fck (flags:0x932800, usecount:0, rate: 91 MHZ)
-        |       |   |    `-- mmc2_fck (flags:0x933000, usecount:0, rate: 91 MHZ)
+       |       |   |   |-- mmc1_fck (flags:0x932800, usecount:1, rate: 91 MHZ)
+       |       |   |    `-- mmc2_fck (flags:0x933000, usecount:1, rate: 91 MHZ)
         |       |   |-- func_24mc_fclk (flags:0x0, usecount:0, rate: 22 MHZ)
         |       |   |    `-- slimbus2_fclk_0 (flags:0x0, usecount:0, rate: 22 MHZ)
-        |       |   |-- func_48m_fclk (flags:0x810800, usecount:2, rate: 45 MHZ)
+       |       |   |-- func_48m_fclk (flags:0x810800, usecount:3, rate: 45 MHZ)
         |       |   |   |-- mcspi1_fck (flags:0x0, usecount:0, rate: 45 MHZ)
@@ -322,3 +322,3 @@
         |       |   |   |-- ocp2scp_usb_phy_phy_48m (flags:0x0, usecount:1, rate: 45 MHZ)
-        |       |   |   |-- uart1_fck (flags:0x0, usecount:0, rate: 45 MHZ)
+       |       |   |   |-- uart1_fck (flags:0x0, usecount:1, rate: 45 MHZ)
         |       |   |   |-- uart2_fck (flags:0x0, usecount:0, rate: 45 MHZ)

[bb]root@android $
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Winding up:

• Thanks to:
– Texas Instruments – for employing me and sponsoring me 
– Wonderful Engineers at TI and in the community, from whom I keep learning 

everyday.

• Questions ??

• Contact
– avinashhm@ti.com
– vishwanath.bs@ti.com

• Thank you All.

mailto:avinashhm@ti.com
mailto:vishwanath.bs@ti.com
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