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About us
● Embedded Linux Engineering Firm
● ~40 senior engineers, coming from the semiconductor world
● HW and SW products: from concept to manufacturing
● Upstream Linux kernel development and maintenance
● Founding developers of kernelCI.org project

About me
● 10 years experience
● Kernel and user-space developer
● Maintainer of libgpiod and co-maintainer of the GPIO kernel 

sub-system
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A lot can change in a couple months...
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A lot can change in a couple months...

The GPIO character device has been extended with new features in linux 
v5.5 and final new additions before declaring it feature-complete are 
planned for v5.6 & v5.7.
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A lot can change in a couple months...

The GPIO character device has been extended with new features in linux 
v5.5 but due to shortcomings in the first version of the ABI, the existing ioctl() 
calls are being retired and v2 of the ABI is being introduced aiming at a 
release as part of linux v5.9.
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Agenda
1. Current state of user API

a. sysfs = bad
b. Character device
c. Recently added features
d. GPIO aggregator

2. Upcoming overhaul
a. What’s wrong?
b. What’s new?
c. Advice on designing good uAPI

3. libgpiod
a. what’s new
b. Future
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Current state of GPIO uAPI
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GPIO in userspace
● Writing drivers for devices using GPIOs is encouraged wherever 

possible, but...
● Needed when no kernel device drivers provided/possible

○ Power switches
○ Relays
○ GPS
○ Bluetooth

● Certain users prefer to toggle GPIOs from user space
○ Intelligent home systems
○ Robotics
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/sys/class/gpio - legacy user API
● d8f388d8 (“gpio: sysfs interface”)
● State not tied to process
● Concurrent access to sysfs attributes
● If process crashes, the GPIOs remain exported
● Cumbersome API
● Single sequence of GPIO numbers representing a two-level hierarchy - 

necessary to calculate the number of the GPIO, numbers not stable
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GPIO character device - new user API
● Merged in linux v4.8
● One device file per gpiochip

○ /dev/gpiochip0, /dev/gpiochip1, /dev/gpiochipX…
● Similar to other kernel interfaces: open() + ioctl() + poll() + 

read() + close()
● Possible to request multiple lines at once (for reading/setting values)
● Possible to find GPIO lines and chips by name
● Open-source and open-drain flags, user/consumer strings, uevents
● Reliable polling
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GPIO event polling - now reliable
sysfs cdev

Event 3 Event 1Event 2

read()poll()

poll() - /sys/class/gpio/gpioX/value

close()+open()/llseek()  - 
/sys/class/gpio/gpioX/value

read() -> ‘0’/’1’
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Events never get lost!
Unless kernel buffer overflows...



Character device:
new features

For more info on previous features:
https://www.youtube.com/watch?v=BK6gOLVRKuU
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GPIO character device: set_config
● Allows to change the configuration of owned lines

○ Previously lines needed to be released, re-configured and re-requested -> this is racy
● Does not work for lines monitored for events
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struct gpiohandle_config {
__u32 flags;
__u8 default_values[GPIOHANDLES_MAX];
__u32 padding[4]; /* padding for future use */

};

#define GPIOHANDLE_SET_CONFIG_IOCTL _IOWR(0xB4, 0x0a, struct gpiohandle_config)



GPIO character device: bias settings
● Bias settings: pull-up/pull-down/disabled

○ Requested for a long time
○ RPi folks are very happy
○ Simple flags in struct gpioline_info and struct gpioline_handle
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/* Linerequest flags */
#define GPIOHANDLE_REQUEST_INPUT (1UL << 0)
#define GPIOHANDLE_REQUEST_OUTPUT (1UL << 1)
#define GPIOHANDLE_REQUEST_ACTIVE_LOW (1UL << 2)
#define GPIOHANDLE_REQUEST_OPEN_DRAIN (1UL << 3)
#define GPIOHANDLE_REQUEST_OPEN_SOURCE (1UL << 4)
#define GPIOHANDLE_REQUEST_BIAS_PULL_UP (1UL << 5)
#define GPIOHANDLE_REQUEST_BIAS_PULL_DOWN (1UL << 6)
#define GPIOHANDLE_REQUEST_BIAS_DISABLE (1UL << 7)



GPIO character device: line watch
● Allows user-space to be notified about changes in line status

○ Line request
○ Line release
○ Config change
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LINE_WATCH ioctl()
Return current 
line info and 
start watching

poll()/read() GPIO 
chip file descriptor

Return struct 
gpioline_info_changed

Line info

Timestamp

Event type

Padding



GPIO Aggregator
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GPIO aggregator
● Access control for GPIO character devices is provided using unix 

persmissions
● All or nothing - either all lines are accessible to user or none are
● Sometimes it’s necessary to grant users access to certain GPIO lines
● “Aggregate” them via a virtual GPIO chip device
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GPIO aggregator
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GPIO chip A GPIO chip B

Line 0 Line 1 Line 2 Line 3 Line 1 Line 2 Line 3Line 0

Virtual GPIO 
chip

Line 2Line 0 Line 1



GPIO aggregator
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$ cd /sys/bus/platform/drivers/gpio-aggregator
$ ls
bind delete_device module new_device uevent unbind
$ gpiodetect 
gpiochip0 [gpio-mockup-A] (4 lines)
gpiochip1 [gpio-mockup-B] (4 lines)
$ echo "gpio-mockup-A 0,2 gpio-mockup-B 1" > new_device
$ ls
bind delete_device gpio-aggregator.2 module new_device uevent unbind
$ gpiodetect
gpiochip0 [gpio-mockup-A] (4 lines)
gpiochip1 [gpio-mockup-B] (4 lines)
gpiochip2 [gpio-aggregator.2] (3 lines)
$ gpioinfo gpiochip0
gpiochip0 - 4 lines:

line   0:      unnamed "gpio-aggregator.2" input active-high [used]
line   1:      unnamed       unused   input  active-high 
line   2:      unnamed "gpio-aggregator.2" input active-high [used]
line   3:      unnamed       unused   input  active-high

$



Upcoming overhaul
Uh… so what’s wrong?
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What’s wrong: 64-bit kernel with 32-bit user-space
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64-bit kernel 32-bit user-space

struct gpioevent_data struct gpioevent_data

64-bit timestamp

32-bit event id

32-bit padding

64-bit timestamp

32-bit event id



What’s wrong: no padding for future use
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struct gpiohandle_request {
__u32 lineoffsets[GPIOHANDLES_MAX];
__u32 flags;
__u8 default_values[GPIOHANDLES_MAX];
char consumer_label[32];
__u32 lines;
int fd;

};

● ABI needs to remain stable
● No extension possible
● Extended config structure needed (debounce time etc.)



What’s wrong: using wrong clock for timestamps
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● GPIO character device uses the REAL clock for timestamps
● It can go backwards…
● Need to use the mononic clock
● Switched to using the monotonic clock in commit f8850206e160 

("gpio: Switch timestamps to ktime_get_ns()")
● This breaks the ABI but we just bit the bullet...



Sensible requests for new features
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● Debounce time: for line events read from user-space
● Bias setting (pull-up/pull-down resistors controlled by drivers)
● Event sequence numbering
● All of the above can’t be implemented with current ioctl()s



GPIO chardev v2
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GPIO chardev v2 - current status
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● New uAPI proposed on linux-gpio
● Don’t break user-space - v1 ABI must remain stable
● Fix 64-bit kernel to 32-bit user-space issues
● Add padding to structures
● Rework flags
● Merge linehandle and lineevent requests



GPIO chardev v2 - merge linehandle and lineevent
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linehandle fd lineevent fd

lineevent fd

lineevent fd

GPIO line 0

GPIO line 2

GPIO line 1

GPIO line 0

GPIO line 1

GPIO line 2

v2

linerequest fd

GPIO line 0

GPIO line 1

GPIO line 2

Request type



GPIO chardev v2 - rework flags

29

Direction Drive EdgeBias

input

output

push-pull

open-drain

open-source

disabled

pull-up

pull-down

none

falling

rising

both



libgpiod
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libgpiod – C library & tools for GPIO chardev

● History
○ Needed a solution for toggling power switches on BayLibre ACME

■ IIO attributes
■ Regulators controlled from user space
■ GPIO character device

○ Version 0.1 released on January 18th 2017
○ v1.0 released on February 7th 2018
○ Current stable version is 1.5.2

■ needs linux v5.5
○ v1.4.x series still supported for linux v5.4 (LTS)
○ v2.0 development starting soon (chardev v2)
○ v2.0 will not support chardev v1
○ v0.3.x support soon dropped
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libgpiod – C library & tools for GPIO chardev

● Features
○ C API, fully documented in doxygen
○ Command-line tools: gpiodetect, gpioinfo, gpioset, gpioget, gpiofind & gpiomon
○ Custom test suite (working together with gpio-mockup kernel module and irq_sim)

● Language bindings
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libgpiod – new features and future

● New features in v1.5
○ Support bias flags and set_config
○ Use existing testing frameworks for automated tests

■ GLib tests
■ Catch2
■ Python unittest
■ Bats

● Future (v2.x)
○ new API
○ GLib bindings
○ dbus bindings
○ gpiowatch
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Q & A

Kudos to:
Geert Uytterhoeven <geert@linux-m68k.org>: for implementing the GPIO aggregator
Kent Gibson <warthog618@gmail.com>: for his work on v2 of GPIO uAPI
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