
Android* Software
Updates
Andrew Boie
Intel Corporation
andrew.p.boie@intel.com
18 March 2015

mailto:andrew.p.boie@intel.com

‹#›

Agenda

• Introduction
• Filesystem Configuration
• Releasetools
• Recovery Console
• Updater
• SW Update Lifecycle
• Wrap-up

‹#›

INTRODUCTION

‹#›

Capabilities

• Full Image SW Updates
– Updates from any compatible prior SW version
– At creation time, can set flag to enforce rollback protection; older SW versions cannot be installed on top of

newer ones
• Incremental SW Updates

– bsdiff / imgdiff patching on a block-level basis for filesystems boot images
– Older-style per-file basis patching still supported, but incompatible with dm-verity
– Incremental updates typically much smaller than a full image update

• AOSP code updates /system, /vendor and boot images
– Extensible to update special firmware or baseband software via plug-ins

• Update zip files have embedded digital signature
– verified by android.os.RecoverySystem.verifyPackage() API and also the Recovery Console

• Safely restartable in the event of a power loss
– Patched files are swapped with originals with rename()
– Device keeps booting into RC until process is complete
– RC itself updated after SW update is done and booted into new Android image via oneshot flash-

recovery init service
• At creation time, updates can be configured to force Factory Data Reset in case update has

incompatible userdata
– In a perfect world, only used during development, end users will hate you

• Updater program which actually applies the update lives inside the signed SW update
package and not on the device 

‹#›

AOSP Software Update Components

• Releasetools
– Create digitally signed software updates from a target-files-package (TFP)

• TFP generated by Android* build system
– Substitute testing for production keys inside a TFP

• android.os.RecoverySystem APIs
– Framework APIs to verify & install SW updates
– Handles verification of OTA update digital signature
– Writes RC command files into /cache/recovery and reboots into Recovery Console
– Also used to engage Factory Data Reset

• Recovery Console (RC)
– Alternate boot environment
– Verify & Apply SW updates
– Perform Factory Data Reset
– Typically controlled by command files left by RecoverySystem APIs
– Hidden menu for manual interaction

• Updater
– SW update logic, binary inside SW update package
– AOSP implementation runs script in Edify language
– Platform-specific tasks implemented in plug-ins

• SW Update UI intent from Settings application

‹#›

Missing Pieces

• Not all components for an end-to-end solution are open source
– Remote server backend to host updates (the Server)
– Client-side mechanism to check and download updates (the Fetcher)
– Client-side notification UI that SW Updates are available (the Notifier)

• Clearly defined layers of abstraction should make these more or less
drop-in

– Only the server and fetcher care about OTA protocol unless part of a larger device
management framework like OMA-DM

– Fetcher/Notifier in most cases the same APK
– Works with rest of the SW Update system via android.os.RecoverySystem APIs
– Settings app integration:

• Notifier APK should have activity with intent filter for
android.settings.SYSTEM_UPDATE_SETTINGS to check for updates

– Launched when user clicks About tablet -> System Updates
– BootReceiver to check for RC messages in /cache/recovery
– No other framework modifications should be necessary

• Any vendor that proposes invasively hacking up the framework to support OTA should be
regarded with extreme suspicion unless they are doing OMA-DM

‹#›

Limitations

• No support for disk re-partitioning
– Leave lots of slack space in /system for future Android releases
– Leave slack space in boot and recovery partitions for future boot images

• One update applied at a time
• Device can’t be used while updates are applied
• Errors during update typically require RMA

‹#›

FILESYSTEM CONFIGURATION

‹#›

Partition Layout

• boot
– AOSP boot image
– Linux kernel and ramdisk mounted as root filesystem
– Contains init and essential tools to mount /system and boot the rest of Android

• system
– All Android system applications and libraries
– Always mounted read-only

• Incremental updates depend on /system being in a specific state
– For ext4 with dm-verity, down to the block level
– Otherwise, on a per-file basis (old way)

• Mounting read-write at any time modifies the ext4 superblock

• vendor
– Found on some Android devices, similar purpose and limitations as /system
– May contain vendor-specific apps and libraries not provided by AOSP

• oem
– Found on some Android devices, contains vendor-specific oem.prop file, branding, bundled apps
– If oem.prop file affects OTA update, pass it to ota_from_target_files with -o option
– Not touched by OTA updates, if you put apps on there they can only be updated via Play Store or equivalent

• data
– Downloaded applications
– Application data
– Dalvik cache
– Typically not touched by OTA updates
– Erased by Factory Data Reset

‹#›

Partition Layout (continued)

• recovery
– Alternate AOSP boot image
– Ramdisk contains ‘recovery’ program which is the RC implementation

• misc
– Very small size, does not contain a filesystem

• Has Bootloader Control Block (BCB) written directly to the block device node
– Used to communicate between RC and the bootloader

• persistent
– Cached user credentials for untrusted Factory Data Reset
– Flag to allow "Fastboot OEM unlock" stored here
– Not touched by the OTA system

• metadata
– Contains crypto metadata for encrypted userdata
– Not touched by the OTA system

• cache
– Temporary storage, contents can be erased at any time
– Used by some applications as a temporary storage/download area

• Requires special APK permissions
– Downloaded OTA updates used to be stored here

• Recovery Console can now read OTA update data directly from userdata partition
• pre-recovery service un-encrypts blocks containing update file before launching into RC

– Used as temporary storage by applypatch
– Erased during Factory Data Reset
– CDD specifies 100M size, used to be 2/3 size of /system

‹#›

Android Boot Images

• Container file format, with metadata, kernel image, ramdisk, and
optional 2nd-stage bootloader image

• Created by system/core/mkbootimg
• Used in two places

– Called by the build system to create boot images in $OUT as part of a normal
build

– Also created by Releasetools when assembling an OTA update from a target-files-
package

• After creation by mkbootimg, signed with boot_signer utility
– system/extras/verity
– Part of Lollipop Verified Boot feature

‹#›

fstab

• Specification file for all the filesystems on the device
– Not a partitioning specification, no offset/ordering/partition size information

• Used by RC, fs_mgr, and Releasetools
• In older versions of Android

– Used to be a "recovery.fstab" file only used by RC
– Mounting of images at boot was done by manual mount commands in init.rc
– Nowadays mounting done by fs_mgr, shares fstab format with RC

• Maps mount points to device nodes and filesystem types

‹#›

RELEASETOOLS
Software Update Creation

‹#›

Target-Files-Package (TFP)

• Created by ‘make target-files-package’
– Build logic in build/core/Makefile

• Zip file containing snapshot of a particular SW release, everything
needed to create an OTA update

– A single TFP used to create a full image update
– Two TFPs used to create an incremental update

• Subdirectories containing image contents
– BOOT/, RECOVERY/, SYSTEM/, VENDOR/
– Prebuilt boot and filesystem images under IMAGES/

• Add additional device-specific blobs by defining “radio files”
– Seems to be a legacy name, doesn’t necessarily have anything to with device’s

radio
– In AndroidBoard.mk:

• $(call add-radio-file,myblob.dat)
– Ends up in target-files-package in RADIO/ directory
– Platform-specific extensions to Releasetools will handle these files

‹#›

Android Security

• All APKs are digitally signed
– Updates to the same application must be signed by the same key otherwise app data will be

inaccessible
– Apps that want to share the same user ID must be signed with the same key
– LOCAL_CERTIFICATE specifies the key; defaults to testkey

• OTA updates will be discarded if not signed with one of the expected keys
• AOSP has five keys in build/target/product/security

– Testkey: Default key to sign APKs
– Platform: Core platform packages are signed with this
– Shared: Data sharing between Home and Contacts processes
– Media: Packages in the media/download system
– Verity: Signed boot & recovery images, dm-verity root hash for /system and /vendor

• 2048-bit RSA keys with public exponent 3. Created with openssl
• Cannot ship a product with the AOSP keys that are in the build

– Test keys should only be used during development, enforced by CTS case
– sign_target_files_apks tool in Releasetools used to swap out the AOSP test keys in the TFP

with the real production keys
• Re-signs all APK files with new keys
• Recreates boot, system, recovery, vendor images signed with new verity key
• Swaps out OTA verification key in RC ramdisk
• Swaps out dm-verity root hash key in boot ramdisk
• Prebuilt images under IMAGES/ updated

‹#›

ota_from_target_files

• Lives with the rest of the Releasetools in build/tools/releasetools
• Script to create OTA updates from one or more TFPs. Some useful options:

– --incremental-from <TFP>
• creates an incremental update from a source TFP

– --wipe-user-data
• OTA package will erase /data when installed

– --no_prereq
• Disable rollback protection checks

– --package_key
• Key to use to sign the package; defaults to testkey

– --block
• Generate block-level OTA updates

– --two-step
• Recovery Console is updated first, then other update tasks are run
• Typically not needed unless updater inside OTA package has dependency on new kernel

• For most platform-specific update tasks, Python extensions can be implemented
to perform additional tasks in the update

• Creates a SW update package containing all images, updater binary, and Edify
script that updater interprets to apply the SW update

‹#›

SW Update Creation

Android
Build

TFP
(Test Keys)

Re-Sign
APKs

TFP

Source SW
TFP

Generate SW
Update

SW Update

sign_target_files_apks ota_from_target_files

Optional, to create
Incremental update

‹#›

Releasetools Extensions

• “Radio files” specified in AndroidBoard.mk will be populated in the TFP
• To extend Releasetools to work with these files, create a Python module with the following

functions
– FullOTA_Assertions()

• Called after emitting the block of assertions at the top of a full OTA package
– FullOTA_InstallBegin() & FullOTA_InstallEnd()

• Called at the end of full OTA installation
– IncrementalOTA_Assertions()

• Called after emitting the block of assertions at the top of an incremental OTA package
– IncrementalOTA_VerifyBegin() & IncrementalOTA_VerifyEnd()

• Called at the beginning/end of the verification phase of incremental OTA installation; put checks here to abort the script
before any changes are made

– IncrementalOTA_InstallBegin() & IncrementalOTA_InstallEnd()
• Called at the beginning/end of incremental OTA installation

– All functions passed an ‘info’ option which has pointers to
• zipfile.ZipFile objects for source and target TFPs, output zip file. Used to move files or create patches from TFPs and

place inside the SW update
• Script object to append additional Edify script commands
• Use ota_from_target_files code as a guide

• Put path to this module in TARGET_RELEASETOOLS_EXTENSIONS in BoardConfig.mk
• Relevant ota_from_target_files options

– --device_specific path to Releasetools extension module
– --extra to pass additional key/value pairs accessible by Releasetools extension
– --extra_script to directly add commands to the generated updater Edify script

‹#›

Other Releasetools

• img_from_target_files
– TFP as input
– Produces an image zipfile suitable for use with ‘fastboot update’
– Just flashes prebuilt images in IMAGES/ subdir

• boot, recovery, system, etc

• check_target_files_signatures
– Looks for problems with package signatures inside a TFP
– Can be used to check for compatibility problems between two TFPs (key changes, etc.)

• add_img_to_target_files
– Used to update the IMAGES/ directory in the TFP

• build_image.py
– Code to create signed ext4 filesystems with dm-verity metadata and hash tree

• make_recovery_patch
– Build system tool to create the recovery.img patch from boot.img so that it can be populated in

the system image
– Recovery patch can't be inserted into system image after it is made due to signing, so

generation moved much earlier in the build process

‹#›

RECOVERY CONSOLE (RC)
SW Update Alternate Boot Environment

‹#›

Recovery Console

• Alternate boot image, a few ways to enter
– reboot recovery from a shell
– RecoverySystem APIs in Android Framework
– OEMs sometimes implement a bootloader ‘magic key’

• Pictorial interface
– Recent versions of Recovery Console now allow for multiple screen resolutions and localized

text strings during update process
• Only 4 strings (error, installing, no_command, erasing), rendered as image files

• Hidden non-localized menu for manual tasks
– Factory Data Reset
– "Sideload" OTA update over ADB
– Other platform-specific tasks as implemented in Recovery Console UI plug-in

• SD Card installation of OTA package no longer part of default UI

• Log files saved in /cache/recovery
– All stdout/stderr from RC and Updater
– Edify ui_print() commands
– Log files can now be directly viewed in the Recovery Console UI

‹#›

/misc and the BCB

• Tiny partition used for communication between RC and bootloader,
and for RC to save state information

• Contains Bootloader Control Block (BCB)
– command[32]: Commands for the bootloader

• “boot-recovery” boot into RC instead of Android
• Other platform-specific commands may be implemented for update tasks that must be

done by the bootloader
• If empty, garbage, or no known commands matched, normal Android boot

– status[32]: Return status field written by bootloader after performing platform-
specific commands

• No specification, platform-dependent
– recovery[1024]: Command line for Recovery Console

• Arguments tokenized by ‘\n’
• Invalid if first argument not ‘recovery’

‹#›

Recovery Console Control

• Upon startup, looks for command line arguments in decreasing precedence:
– Actual command line to ‘recovery’, debug-only scenario
– BCB.recovery
– Command file in /cache/recovery/command (written by RecoverySystem APIs)

• RecoverySystem doesn’t write to BCB due to permissions on doing raw block device I/O

• Always copies arguments into BCB.recovery and sets BCB.command to “boot-
recovery”

– Makes sure we keep booting into RC with the same arguments in event of unexpected power loss
– Don’t rely solely on /cache/recovery/command for this

• finish_recovery()
– Called when requested operations (SW update, factory data reset, etc) are complete, whether

successful or failed
– BCB is cleared so that subsequent reboot goes back into Android
– Rotates log files under /cache/recovery/
– If no arguments were given to RC, displays error image and waits for menu input

• A divergent update process is very very bad, should always at some point
complete so that finish_recovery() can be called

– Else the device will get stuck, user resets it, gets stuck again, can never boot back into Android

‹#›

Bootloader Integration

• Linux kernel should do a one-shot boot into Recovery Console boot
image if “recovery” is supplied as a reboot() argument

– Implement in a driver via register_reboot_notifier()
– Communicating this to the bootloader platform-specific

• On EFI devices we used an EFI Variable

• Bootloader selects boot image (or other task) at boot
– Check BCB.command field

• Set by RC when it first begins an update
• BCB.command is persistent; keep booting into RC until RC clears it
• Garbage or zeroed out contents should simply boot into Android

– Check platform-specific mechanism for one-shot boots

‹#›

Recovery Console UI Plug-in

• Device-specific policy and extensions for RC
– Copy bootable/recovery/default_device.cpp into your $(TARGET_DEVICE_DIR)

space and create as a static library
– Set TARGET_RECOVERY_UI_LIB in BoardConfig.mk to the $

(LOCAL_MODULE) for this library

• Capabilities
– Implements Device class, see bootable/recovery/device.h
– Define additional menu items in Device::GetMenuHeaders()

Device::GetMenuItems()

– Extra device wiping code implemented in Device::WipeData()
– Customization of branding graphics done in Device::GetUI()
– Additional initialization tasks in Device::StartRecovery()
– Customize effect of keystrokes with Device::HandleMenuKey()

• Key chords can be implemented by additionally checking ui_key_pressed(code)

– Implementation of device-specific commands in Device::InvokeMenuItem()

‹#›

Recovery Branding

• Image-only GUI; in case of a problem
user must call customer care

• Built-in images can be replaced by
putting images in $
(TARGET_DEVICE_DIR)/
recovery/res

– Must be 8-bit PNGs in RGB or RGBA
format

– Keep same filenames
• Number of animation frames for

items, offsets, etc., can be set in
UIParameters struct passed to
device_ui_init() in UI plug-in

• bootable/recovery/make-
overlay.py script helps create the
base image plus overlay frames and
computed offsets for animations

Portions of this page are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons
3.0 Attribution License.

http://code.google.com/policies.html
http://creativecommons.org/licenses/by/3.0/

‹#›

UPDATER

‹#›

Updater binary

• Lives inside the SW update zip
– No need for security checks since signature of SW update has been verified
– Nice to have this in the zip so that all SW update implementation code doesn’t need to exist a

priori
– If certain update tasks require an updated kernel, use 2-step updates which reboot into an

updated Recovery Console before continuing
• Not strictly required to use the updater implementation in AOSP

– RC fork/execs updater and communicates via pipe
– RC passes in 3 arguments

• RC API version (currently 3)
• file descriptor for communication pipe
• path to the SW update zip file

– Updater writes string commands over the pipe to set progress bar parameters or print strings
to the hidden Recovery UI; see bootable/recovery/install.c

• AOSP implementation interprets a script inside the SW update written in
Edify language

• Platform-specific updater capabilities implemented in plug-ins
• Be sure updater terminates! Corner cases where it doesn’t terminate

effectively bricks the device

‹#›

Recovery From Boot

• RC itself is not updated during the course of a SW update
– Makes sure that the same RC (from the source SW version) is used throughout

the update even if power lost
– Useful for key revocation scenarios

• Oneshot init.rc service flash_recovery
– Runs /system/etc/install-recovery
– Checks SHA1 of Recovery image to detect whether it needs to be patched
– No-op if matches patched SHA1
– Applies a patch to the boot image to create the RC image, which is written to the

recovery partition

‹#›

Applypatch

• Used by incremental updates to patch /system files and boot images
• When calculating binary diffs, is able to detect compressed file

headers and break files into chunks
– For gzip, does not work well unless file was compressed with same version of

deflate() algorithm that it has access to
– ‘gzip’ has a much older deflate() than zlib (gzip does not link against zlib, it is self-

contained)
– Hence all ramdisks should be compressed with zlib-linked ‘minigzip’ and so

should bzImages
• May have to hack your kernel build to use minigzip instead of gzip
• I sent a patch to LKML to add minigzip as a supported compression type in Kconfig but

the response was unkind

• Uses bsdiff algorithm
– Bsdiffs can take a while to compute
– In particular, diffs of files that both contain large regions of all 0s elicits worst-case

O(n2) performance – don’t diff padding!

‹#›

Edify Language

• Scripting language to specify SW update tasks
• Everything is an expression

– Expressions evaluate to strings
– ; operator is a sequence point, value returned is right side
– Boolean operators supported, concatenation, equality
– if … then … else … endif and if … then … endif blocks
– Empty string is Boolean “false”, all other strings are “true”
– Functions return expressions and take expressions are arguments
– No language support for loops
– Short-circuiting && and || operators

• All functions implemented in C, cannot declare functions in an Edify script
• Implementations for built-in Edify functions related to OTA in bootalble/

recovery/updater/install.c
– Use this code as a guide when implementing your own functions

• Additional functions implemented in plug-ins\
• See bootable/recovery/edify/README for language specification

‹#›

Updater Plug-ins

• Multiple updater libraries can be defined
– Create a static library in Android build in device-specific area
– Put module names in BoardConfig.mk TARGET_RECOVERY_UPDATER_LIBS
– Each library needs a registration function, which gets called by Updater when it

starts up
• void Register_$LOCAL_MODULE()
• Calls RegisterFunction() for each new Edify command

– Use bootable/recovery/updater/install.c as a guide
– Additional supporting static libraries can be added to updater by putting their

module names in TARGET_RECOVERY_UPDATER_EXTRA_LIBS

• Edify API defined in bootable/recovery/edify/expr.h

‹#›

SW UPDATE LIFECYCLE
Putting It All Together

‹#›

SW Update Application (Full Image)

SW Update

RecoverySystem.
VerifyUpdate()

RecoverySystem.
InstallUpdate()

OK?

Yes

Read
Command File

Launch Updater

Decompress SW
Update

Verify Update
Signature

OK?

Android Recovery Console

Yes

Sanity Checks

Format /system
(and optionally /

data)

Extract /
system

contents

Create
Symbolic Links

Retouch
Binaries

Flash Boot
Images

Update
Permissions

Update
Firmware

Updater (inside SW update zip)

Save logs, clean
up, reboot

No

Fail

No

‹#›

WRAP-UP

‹#›

Productization Tasks

• Define fstab file and point TARGET_RECOVERY_FSTAB to it
• Add platform-specific blobs via “radio files” Makefile directives
• Implement RC UI plug-in (optional, default one sufficient for many)

– Add branding images if necessary
– Add platform-specifc tasks
– Map the buttons how you want them
– Additional tasks for Factory Data Reset

• Implement Updater plug-in
– Implement Edify commands in C for platform-specific update tasks

• Implement Releasetools extensions
– Add logic to patch or add RADIO/ images to the OTA update
– Add Edify commands to handle them in updater script
– Add additional assertions/verification steps as needed

• Add BoardConfig.mk variables to declare all plugins/extensions and supporting libraries
• Hook up download agent to Settings application via intent filter
• Bootloader integration to use BCB
• Kernel/bootloader integration for one-shot boot targets
• Generate production keys
• Shouldn’t need to modify the Android framework, build/core, or bootable/recovery
• Have a GOOD ongoing test plan and dogfood as much as possible

‹#›

Tips

• Firmware updating
– If FW image can be read back at runtime:

• Read FW image and save to a file
• Apply binary patch with applypatch
• Flash it back

– Otherwise:
• Put the firmware image somewhere on /system
• Will get patched with everything else on /system during the update
• Query current FW version, compare to version living on /system
• If different flash it

– For FW that affects device boot, make sure FW flashing is safely restartable!
• You should not have to modify the RC, do all your extensions in plug-ins

– Rule of thumb for all Android platform development: don’t change the framework unless you have a really good reason
to do so

– If you do modify Android, do so with upstreaming in mind
• Incremental updates assume /cache is mounted

– No explicit guarantees that RC will mount it for you
– Seems to be a bug in ota_from_target_files, add script.Mount(“/cache”) right before script.CacheFreeSpaceCheck()

• Testing, testing, testing!!!!
– Create SW update packages in your internal releases and make people (field testers, QA, developers) use them
– Automated testing is also your friend

• Buildbot, Jenkins, etc
– Software update is the one mechanism on the device that has to work

• Fortunately Updater is in the SW update package and not on the device

‹#›

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.
* Other names and brands may be claimed as the property of others.
Copyright © 2012 Intel Corporation.

