
DTCON	–	Portable	Device	Tree	Connector

Open	Source	Hardware	thrives

❑ Many	Linux	based	embedded	boards	are	available	to	the	community.	

❑ Raspberry	PI(s)	

❑ Beaglebone	and	variants	

❑ Linaro’s	96	boards	

❑ C.H.I.P.	

❑ Orange	PI	(*)	

❑ Minnowboard	

❑ And	a	ton	of	others

What	do	people	do	with	them

❑ Just	tinker	about	with	embedded	Linux!	

❑ Learn	about	how	hardware	works	and	how	it	interfaces	with	
Linux	

❑ Make	cool	stuff	with	them.	
▪ 3D	printers	(Replicape)	

▪ Fly	drones	

▪ Water	their	lawns	

▪ Make	expansion	boards	to	sell	them.	

Expansion	boards

❑ Expansion	boards	are	plugged	into	a	physical	connector	

❑ Single	row,	or	double	row.	

❑ Single	connector,	or	multi	connector	

❑ Provides	power	ground	and	electrical	signals	

❑ Direct	connection	to	the	pads	of	the	SoC	package	

❑ Modern	SoCs	are	complicated

What	it	takes	to	make	a	new  
expansion	board	work?

❑ You	connect	wires!	

❑ One	set	of	wires	is	your	UART,	another	is	your	I2C	bus,	a	
couple	of	others	is	your	GPIO	lines	etc.	

❑ You	need	to	describe	those	connections	and	peripheral	
configuration	in	a	manner	than	Linux	understands.	

❑ Many	ways	to	describe	hardware	to	Linux,	we’ll	talk	about	
how	you	do	it	using	Device	Tree.

Device	Tree	and	devices

/ {

foo0: foo@0 {

compatible = “barcorp,foo”;

status = “okay”;

baz = <12>;

interrupts = <12>;

….

};

};

Exactly	the	same	as	a	device  
soldered	on	the	board

❑ No	difference	than	when	having	the	expansion	board	soldered	
on	the	main	board.	

❑ One	needs	to	be	intimately	aware	of	the	minutiae	of	each	
board	and	as	a	consequence	of	the	SoC	Linux	port.	

❑ You	need	to	get	everything	right.	Maybe	there’s	a	device	
example	configured	similar	to	your	own	and	you	can	copy.	

❑ If	not,	you	have	to	figure	out	everything.	

Intermission:  
Beaglebone	example

1. Read	the	schematic	of	expansion	board.	Write	down	pinout,	and	jot	down	the	
configuration	of	each	pin	and	pin-number.	

2. Lookup		the	connector	chapter	reference	manual	of	the	Beaglebone	and	figure	out	
which	mode	the	processor	pad	that’s	connected	to	the	connector	pin	must	be	set	to.	

3. Look	in	the	hardware	reference	manual	of	the	SoC	which	pad	is	configured	by	which	
pinmux	register.	

4. Look	in	the	technical	reference	manual	of	the	SoC	which	value	to	set	in	the	hardware	
pinmux	register	looked	up	before.	

5. Fill	in	the	pinmux	configuration	in	the	correct	format	and	add	in	the	device	tree.	

6. Fill	in	any	other	special	configuration	parameters	to	the	device	tree	nodes	
controlling	the	devices	present	on	the	expansion	board.

Configuration	is	SoC	specific

❑ The	configuration	is	SoC	specific.	

❑ Figuring	out	the	configuration	is	hard.	

❑ Getting	it	wrong	is	frustrating	(not	easy	to	debug)	

❑ Many	community	boards	have	compatible	expansion	connectors.	

❑ Arduino	Compatible	

❑ RPI	Compatible	

❑ Grove	

❑ 96	boards

Mission:	
Portable	Expansion	Boards

❑ Make	expansion	boards	work	in	every	board	that	has	a	
compatible	expansion	connector	

❑ Simplify	the	expansion	board	definition	

❑ Remove	all	SoC	specific	configuration	from	the	expansion	
board	definition

The	ubiquitous  
Arduino	Connector

The	RPi	Connector

The	Beaglebone	Connector

Baseboards	are	commodities

❑ The	base	board	is	a	commodity.	

❑ The	expansion	boards		are	what’s	important.	

❑ Choose	the	right	baseboard	for	my	application.	

❑ Base	board	makers	compete	in	a	level	playing	field.	

❑ Increase	the	community	size	by	reducing	fragmentation.	

❑ (ARM)	Multiarch	kernels	+	portable	connectors	->	Same	kernel	
+	root	filesystem	boots	on	every	board.

dtcon:	DT	Connector

❑ An	extcon	driver	

❑ Defines	the	core	connector	constructs.	

❑ connector	

❑ functions	

❑ bridge	drivers	

❑ proxy	drivers

connector

❑ connector/#address-cells	->	connector	addressing	

❑ Each	node	contains	one	or	more	reg	addresses	

❑ reg	addresses	are	pin#	

❑ contain	properties	unique	for	each	connector	pin	

❑ I.e.	pad	name,	textual	modes,	pinmuxes	etc.

functions

❑ Each	pin	may	be	assigned	a	function.	

❑ Defines	set	of	pins	that	comprise	a	function,	as	well	as	
allowable	combination.	

❑ Defines	properties	that	configure	a	bridge	driver	(i.e.	gpio)	

❑ Defines	properties	that	configure	a	proxy	driver,	i.e.	
parameter	names	and	parameter	transformations.

bridge	driver

❑ Drivers	that	act	a	bridge	between	the	connector	domain	and	
the	base	DT	domain.	

❑ They	are	drivers	that	supply	services	to	other	drivers	in	a	way	
that	can’t	be	expressed	using	a	proxy	driver.	

❑ Example	of	bridge	driver	is	GPIO,	controls	a	set	of	pins	as	a	
single	gpio	driver	and	consolidating	all	pins	that	can	be	set	to	
GPIO	mode	on	the	connector	as	a	single	driver.

proxy	driver

❑ Uses	configuration	from	function	it	is	part	of	to	request	pins	
from	the	connector	and	configure	them	properly	for	it	to	work	

❑ It	has	a	device	target	which	is	a	pointer	to	the	device	that’s	
going	to	be	configured	and	used.	

❑ There	is	a	single	proxy	driver	for	all	classes	of	devices	that	can	
be	supported.	

❑ Proxy	drivers	deal	with	devices	that	provide	no	services	to	
other	drivers.	Those	need	bridge	drivers.	

Real	example	
Beaglebone	capes

❑ Beaglebone	is	a	relatively	popular	board	

❑ Mainline	kernel	with	working	cape	support	

❑ Extensive	pinmuxing	options	stresses	the	connector	
infrastructure.	

❑ 	A	very	good	selection	of	peripherals	covering	corner	cases

Real	example	
Beaglebone	&	a	few	capes

❑ Beaglebone	is	a	relatively	popular	board	

❑ Mainline	kernel	with	working	cape	support	

❑ Extensive	pinmuxing	options	stresses	the	connector	
infrastructure.	

❑ 	A	very	good	selection	of	peripherals	covering	corner	cases

proposed	driver	DT	bindings

/ {

dtcon {

compatible = "extcon,dt-con";

 status = "okay";

 connector { … };

functions { … };

plugged { … };

};

connector	node	DT	bindings

connector {

#address-cells = <2>;

#size-cells = <0>;

GPIO1_6: GPIO1_6 {

reg = <8 3>;

 pad = "R9";

 pinmuxes = <&gpmc_ad6>, <&mmc1_dat6>,

 <&gpio1_6_in &gpio1_6_out>;

 };

 …

 };

interrupting..	pinmuxes

/* the muxes for the dtcon */

&am33xx_pinmux {

/* P8.3 GPIO1_6 */

gpio1_6_in: gpio1_6_in {

pinctrl-single,pins = <

AM33XX_IOPAD(0x818,PIN_INPUT_PULLUP | MUX_MODE7)

>;

};

….

};

pinmuxes	(cont)

❑ Connector	driver	handles	all	pinmux	setting	

❑ The	list	of	enabled	pins	is	used	to	lookup	which	pinmux	
fragments	to	add	to	the	selected	state	and	enable	them.	

❑ Needs	a	patch	to	enable	runtime	pinmux	state	construction.	

❑ Completely	removes	the	need	for	a	non-board	support	or	SoC	
developer	to	set	muxes.

function	node	DT	bindings

functions {

<function-name} { };

};

❑ For	each	function	there	is	a	node	which	contains	configuration	
parameters	for	the	function	(not	the	device	instance)	

❑ For	the	bridge	drivers,	the	contents	are	completely	free-form	

❑ For	the	proxy	drivers,	contents	follow	a	general	format

GPIO	bridge	driver

dtcon_gpio: gpio {

gpio-base = <256>;

#modes = <2>;

mode-names = “in”, “out”;

gpio = <&gpio0 2 &UART2_RXD &gpio0_2_in &gpio0_2_out>,

 ….

 <&gpio2 11 &GPIO2_11 &gpio2_11_in &gpio2_11_out>,

 ….

};

GPIO	bridge	driver	(cont)

❑ GPIO	cannot	be	a	proxy	driver	

❑ GPIO	driver	provide	services	to	other	drivers	

❑ Interface	with	the	pinctl	subsystem.	

❑ For	GPIO	controllers	that	support	it	they	can	be	an	
interrupt	controller.	

❑ Many	drivers	reference	a	GPIO	as	part	of	their	operation	
(i.e.	dsr-gpios

Proxy	drivers	bindings  
UART

uart {

params {

rxd = { required; };

txd = { required; };

rts-optional { optional; gpio-property = “rts-
gpios”; gpio-mode = “out”;

};

};

Proxy	drivers	bindings  
UART-cont

uart {

 uart@2 {

 device = <&uart5>;

 gpio = <&dtcon_gpio>;

 mux@0 {

 txd = <&UART5_TXD &uart5_txd>;

 rxd = <&UART5_RXD &uart5_rxd>,

 <&UART5_CTSN &uart5_rxd_mux1>;

 };

 };

};

Proxy	drivers	bindings	
I2C

i2c {

params {

scl = { required; };

sda = { required; };

};

};

❑ And	so	on…	Proxy	drivers	are	generally	the	same	although	
special	behavior	can	be	tackled	with	the	match	OF	compatible	
ID	table.

Plugged:	Just	a	bus

❑ compatible	=	“simple-bus”;	actually	

❑ Target	for	overlays,	anything	dropped	there	will	be	
instantiated.	

❑ More	secure	than	vanilla	overlays	with	a	security	
configuration	option	that	disallows	any	overlays	having	a	
target	outside	of	the	plugged	node.

BB-BONE-UART

BB_BONE_UART {

compatible = “dtcon-uart”;

status = “okay”;

 txd = <9 21>;

 rxd = <9 22>;

};

BB-BONE-UART  
sequence	of	events

❑ A	UART	compatible	proxy	driver	is	instantiated.	

❑ Using	the	“uart”	function	node	we	parse	the	“parameters”	
node	for	connector	properties	that	are	representing	a	
connector	property.	

❑ We	iterate	over	all	children	of	the	uart	node	for	a	device	target	
property.	

❑ A	match	is	found	when	the	property	points	to	the	connector	
node	that	the	reg	property	matches.	

BB-BONE-UART  
sequence	of	events	(cont)

❑ The	pinmux	option	that	is	part	of	the	tuple	is	enabled	

❑ All	properties/child	nodes	are	copied	in	the	target	device	
node.	

❑ Performed	using	a	changeset	so	that	they	can	be	reverted.	

❑ The	target	device	is	enabled	with	‘status=“okay”’	and	it	is	
created.

BB-RELAY-4PORT

BB_RELAY_4PORT {

compatible = “simple-bus”;

status = “okay”;

 gpio_relay_4port: gpio_relay_4port@0 {

 compatible = “dtcon-pio”;

 status = “okay”;

 gpio-controller;

 #gpio-cells = <2>;

 pin-list = <9 15>, <9 23>, <9 12>, <9 27>;

 };

BB-RELAY-4PORT	(cont)

leds@0 {

 compatible = “gpio-leds”;

 status = “okay”;

 jp@1 {

 gpios = <&gpio_relay_4port 0 GPIO_ACTIVE_HIGH>;

 default-state = “keep”;

 }

};

BB-RELAY-4PORT	
sequence	of	events

❑ The	dtcon-gpio	device	which	is	created	using	the	pin-list	property	
to	locate	the	matching	connector	nodes.	

❑ Note	that	the	numbering	of	the	GPIOs	are	in	the	order	they	are	
stated	in	the	pin-list	property.	

❑ The	backend	gpiochips	are	located	and	kept	in	a	list.	

❑ When	the	led	driver	is	probed	internal	API	calls	are	forwarded	to	
the	real	GPIO	drivers	present.	

❑ Unfortunately	major	rewrite	of	GPIO	layer	underway,	patches	do	
not	apply,	WIP.	

Development	status

❑ Mostly	works	for	standard	devices	(UART/I2C/SPI	etc).	

❑ GPIO	is	broken	due	to	GPIO	rewrite.	Needs	a	cleaner	interface	
for	cascaded	GPIO	operations.	

❑ Pinmuxing	needs	patch	to	build	a	pinmux	state	dynamically.	

❑ Bridge	drivers	for	other	hardware	classes.	PWM	is	next.	

❑ Mainline	will	take	quite	a	few	iterations.

Thank	you!

Questions?

