
DirectFBDirectFB Internals Internals -- Things You Things You gg
Need to Know to Write Your Need to Know to Write Your
DirectFBgfxdriverDirectFBgfxdrivergg
TakanariHayama, HisaoMunakata
and Denis Oliver Kropp

1

What is What is DirectFBDirectFB??

Thin Graphics Library
Light weight and small footprint (< 700KB Library for SH4)– Light weight and small footprint (< 700KB Library for SH4)

– Not server/client model like X11

Hardware Abstraction Layer for Hardware GraphicsHardware Abstraction Layer for Hardware Graphics
Acceleration
– Anything not supported by Hardware still supported by y g pp y pp y

software, i.e. utilize hardware where possible

Multi-process support
And others, e.g. build-in Window Manager etc.

15-17 April, 2008 2ELC 2008

The First Embedded Chip Support by the The First Embedded Chip Support by the
MainlineMainline DirectFBDirectFB –– RenesasRenesas SH7722SH7722Mainline Mainline DirectFBDirectFB RenesasRenesas SH7722SH7722

15-17 April, 2008 3ELC 2008

df_andidf_andi and and SawManSawMan running on running on
SH7722SH7722SH7722SH7722

15-17 April, 2008 4ELC 2008

DirectFBDirectFB Software Architecture Software Architecture
forfor RenesasRenesas SH4 PlatformSH4 Platformfor for RenesasRenesas SH4 PlatformSH4 Platform

Applications

Direct FB

gfxdriver for system modulegfxdriver for
Renesas’s Platform

system module –
devmem

Linux Kernel

Existing
Code

Linux Kernel

Kernel Module Custom
Code

Hardware Accelerator Video Memory and
Hardware Hardware

15-17 April, 2008 5ELC 2008

Hardware

Important Terms in Important Terms in DirectFBDirectFB

Layers
– Represents independent graphics buffers. Most of embeddedRepresents independent graphics buffers. Most of embedded

devices have more than one layer. They get layered with
appropriate alpha blending by hardware, and displayed.

SurfaceSurface
– Reserved memory region to hold pixel data. Drawing and

blitting operation in DirectFB is performed from/to surfaces.
Memory of surfaces could be allocated from video memory orMemory of surfaces could be allocated from video memory or
system memory depending on the given constraints.

Primary Surface
Special s rface that represents frame b ffer of partic lar la er– Special surface that represents frame buffer of particular layer.
If the primary surface is single buffered, any operation to this
primary surface is directly visible to the screen.

15-17 April, 2008 6ELC 2008

Concept of LayersConcept of Layers

Each represents layer

On the screen they are layered
15-17 April, 2008 7ELC 2008

On the screen they are layered.

DirectFBDirectFB Internal ArchitectureInternal Architecture

Modules you need are:
– Systems (optional)

DirectFB Core
y (p)
• systems/*

– Graphics Devices
– Graphics Drivers

Screens LayersLayersLayers

Graphics Drivers
• gfxdrivers/*

– Screens
– Layers SystemsGraphics

Each modules have
defined function list that
have to be implemented,
i Di tFB i d i d

yp
Devices

i.e. DirectFB is designed
more or less like object-
oriented way.

Frame Buffer/Graphics Accel.

8ELC 200815-17 April, 2008

Device Dependent Modules Device Dependent Modules
DirectFBDirectFBDirectFBDirectFB

Header Module Declaration/Registration Required Functions

Systems src/core/system.h
src/core/core_system.h

DFB_CORE_SYSTEM(<name>) See CoreSystemFuncsin
core_system.h and
system hsystem.h

Graphics
Drivers

src/core/graphics_driver
.h

DFB_GRAPHICS_DRIVER(<name>) SeeGraphicsDriverFun
cs in
graphics driver hgraphics_driver.h

Graphics
De ices

src/core/gfxcard.h via driver_init_driver() in See
iDevices GraphicsDriverFuncs GraphicsDeviceFuncs in

gfxcard.h

Screens src/core/screens.h dfb_screens_register() See ScreenFuncs in
screens.h

Layers src/core/layers.h dfb_layers_register() See DisplayLayerFuncs
in layers.h

15-17 April, 2008 9ELC 2008

SystemsSystems

Frame buffer and hardware management.
– Provides access to the hardware resources– Provides access to the hardware resources.

Supported systems in DirectFB 1.1.0
– fbdev (default)
– osx
– sdl

vnc– vnc
– x11
– devmem

Can be specified in directfbrc
e.g. system=devmem

15-17 April, 2008 10ELC 2008

For Embedded: For Embedded:
system =system = devmemdevmemsystem = system = devmemdevmem

Merged in DirectFB 1.0.1. Uses /dev/mem to access to graphics
hardware and frame buffer.
C i t f th i d I/O d ifConvenient way for those using memory mapped I/O and uniform
memory among CPU and graphics accelerator.

– Most of embedded devices fall into this.
Additional parameters you must specify:Additional parameters you must specify:
– video-phys=<hexaddress>

• Physical start of video memory (devmem system)
– video-length=<bytes>

• Length of video memory (devmem system)
– mmio-phys=<hexaddress>

• Physical start of MMIO area (devmem system)
– mmio-length=<bytes>g y

• Length of MMIO area (devmem system)
– accelerator=<id>

• Accelerator ID selecting graphics driver (devmem system)

15-17 April, 2008 11ELC 2008

How How DirectFBDirectFB matches systems matches systems
andand gfxdriversgfxdrivers??and and gfxdriversgfxdrivers??

DirectFB core queries each gfxdrivers whether they
support particular hardware accelerator by callingsupport particular hardware accelerator by calling
driver_probe() implemented in each gfxdrivers:
– intdriver probe(CoreGraphicsDevice_p (p
*device);

If the particular hardware is supported by the
gfxdriver, the function shall return non-zero value,
otherwise 0 must be returned.
Wh d i d th l d tWhen devmem is used, the value passed to
driver_probe() is the value passed by
‘accelerator=<id>’ Make sure the values matchaccelerator <id> . Make sure the values match.

15-17 April, 2008 12ELC 2008

Graphics Drivers Graphics Drivers -- gfxdrivergfxdriver

Hardware specific graphics driver core. It consists of
the following:the following:
– Graphics Driver Module
– Graphics Device Module
– Screen Module (optional for fbdev, but mandatory for

devmem)
– Layer Module (optional for fbdev, but mandatory for y (p y

devmem)
To have your graphics accelerator working, this is the
code you must write at minimum!code you must write at minimum!
– You can use devmem for system. You don’t have to write

fbdev, if you don’t feel like doing so.

15-17 April, 2008 13ELC 2008

Basics of Writing Basics of Writing gfxdrivergfxdriver

1. There are bunch of headers you need to refer. Copy them from
any gfxdrivers code you can find in gfxdrivers/* appropriately.

2 Y t i i t th f d i d d l i th2. You must give unique name to the gfxdriver and declare using the
following macro:
– DFB_GRAPHICS_DRIVER(sh7722)

3 The macro above requires 6 (six) functions to be defined for use3. The macro above requires 6 (six) functions to be defined for use
by DirectFB core (see src/core/graphics_drivers.h).
Define them.

– Initialize/Close the gfxdriver
– Initialize/Close the device
– Retrieval of Metadata of the gfxdriver

4. Graphics acceleration capabilities are bound to the graphics
devices via gfxdriver you must appropriately specify what isdevices via gfxdriver, you must appropriately specify what is
supported. Set functions for the supported features. See
src/core/gfxcard.h for details.

15-17 April, 2008 14ELC 2008

Functions you need to define in Functions you need to define in
gfxdriversgfxdriversgfxdriversgfxdrivers

static int
driver_probe(CoreGraphicsDevice *device);

– Should return non-zero value if the driver supports particular hardware passed by– Should return non-zero value if the driver supports particular hardware passed by
device. This is called by DirectFB core to probe which driver supports particular
hardware in the system.

static void
driver get info(CoreGraphicsDevice *device,_g _ (p ,
GraphicsDriverInfo *info);

– Set the driver information in info and return.
static DFBResult
driver init driver(CoreGraphicsDevice *device,driver_init_driver(CoreGraphicsDevice device,
GraphicsDeviceFuncs *funcs,

void *driver_data,
void *device_data,

CoreDFB *core););
– Initialize the driver. After successively acquire all required resources, the driver should

register screens and layers. Also needs to return list of callback functions for hardware
accelerations via funcs.

15-17 April, 2008 15ELC 2008

Functions you need to define in Functions you need to define in
gfxdriversgfxdrivers (contd)(contd)gfxdriversgfxdrivers (contd.)(contd.)

static DFBResult
driver_init_device(CoreGraphicsDevice *device,
GraphicsDeviceInfo *device info,GraphicsDeviceInfo device_info,

void *driver_data,
void *device_data);

– Initialize hardware. All necessary hardware initialization should be processed here.
static voidstatic void
driver_close_device(CoreGraphicsDevice *device,

void *driver_data,
void *device_data);

– Whatever you need to do to while you close the device should come here– Whatever you need to do to while you close the device should come here.
static void
driver_close_driver(CoreGraphicsDevice *device,

void *driver_data);
Whatever you need to do to while you close the driver should come here– Whatever you need to do to while you close the driver should come here.

15-17 April, 2008 16ELC 2008

How How gfxdrivergfxdriverGets InitializedGets Initialized

1. DirectFB calls driver_probe() in each gfxdriver on
the system with a graphics device identifier to find

i f d i f h d iappropriate gfxdriver for the device.
2. If driver_probe() of a gfxdriver returns non-zero, then

the DirectFB calls driver init driver(). In _ _
driver_init_driver():
– Register graphics device functions
– Register screen
– Register layers

3. The DirectFB then calls driver_init_device()
subsequently. In driver init device():q y _ _ ()
– Set capabilities supported by the device in

GraphicsDeviceInfo *device_info, e.g. graphics
acceleration capabilities such as Blit/Draw.

15-17 April, 2008 17ELC 2008

Graphics Device FunctionsGraphics Device Functions

You should set graphics device functions in
GraphicsDeviceFuncs *func passed as anGraphicsDeviceFuncs *func passed as an
argument to driver_init_driver().
You don’t have to set all functions Set only those youYou don t have to set all functions. Set only those you
really need.
Most important ones are:Most important ones are:
– Reset/Sync graphics accelerator
– Check/Set state of the graphics accelerator
– Blitting/Drawing functions

15-17 April, 2008 18ELC 2008

22 Graphics Device Functions22 Graphics Device Functions

void (*AfterSetVar)(void *driver_data, void
*device_data);

– function that is called after variable screeninfo is changed (used for buggy fbdev drivers,
that reinitialize something when calling FBIO_PUT_VSCREENINFO)

void (*EngineReset)(void *driver_data, void
*device data);device_data);

– Called after driver->InitDevice() and during dfb_gfxcard_unlock(true). The driver
should do the one time initialization of the engine, e.g. writing some registers that are
supposed to have a fixed value.

– This happens after mode switching or after returning from OpenGL state (e.g. DRI
driver).

DFBResult (*EngineSync)(void *driver_data, void
*device data);device_data);

– Makes sure that graphics hardware has finished all operations.
– This method is called before the CPU accesses a surface' buffer that had been written

to by the hardware after this method has been called the last time.
– It's also called before entering the OpenGL state (e.g. DRI driver).

15-17 April, 2008 19ELC 2008

22 Graphics Device Functions 22 Graphics Device Functions
(contd)(contd)(contd.)(contd.)

void (*FlushTextureCache)(void *driver_data, void
*device_data);

– after the video memory has been written to by the CPU (e.g. modification of a texture)
make sure the accelerator won't use cached texture data

void (*FlushReadCache)(void *driver_data, void
*device data);device_data);

– After the video memory has been written to by the accelerator make sure the CPU
won't read back cached data.

void (*SurfaceEnter)(void *driver_data, void *device_data,
CoreSurfaceBuffer *buffer, DFBSurfaceLockFlags flags);

– Called before a software access to a video surface buffer.
void (*SurfaceLeave)(void *driver_data, void *device_data,
C S f B ff *b ff)CoreSurfaceBuffer *buffer);

– Called after a software access to a video surface buffer.

15-17 April, 2008 20ELC 2008

22 Graphics Device Functions 22 Graphics Device Functions
(contd)(contd)(contd.)(contd.)

void (*GetSerial)(void *driver_data, void *device_data,
CoreGraphicsSerial *serial);

– Return the serial of the last (queued) operation.
– The serial is used to wait for finishing a specific graphics operation instead of the whole

engine being idle.
DFBResult (*WaitSerial)(void *driver data voidDFBResult (WaitSerial)(void driver_data, void
*device_data, const CoreGraphicsSerial *serial);

– Makes sure that graphics hardware has finished the specified operation.
void (*EmitCommands) (void *driver data, void _ ,
*device_data);

– emit any buffered commands, i.e. trigger processing.

15-17 April, 2008 21ELC 2008

22 Graphics Device Functions 22 Graphics Device Functions
(contd)(contd)(contd.)(contd.)

void (*InvalidateState)(void *driver_data, void
*device_data);

– Called during dfb_gfxcard_lock() to notify the driver that the current rendering state is
no longer valid.

void (*CheckState)(void *driver_data, void *device_data,
CardState *state, DFBAccelerationMaskaccel);CardState state, DFBAccelerationMaskaccel);

– Check if the function 'accel' can be accelerated with the 'state'. If that's true, the
function sets the 'accel' bit in 'state->accel‘. Otherwise the function just returns, no
need to clear the bit.

void (*SetState) (void *driver_data, void *device_data,
struct _GraphicsDeviceFuncs *funcs, CardState *state,
DFBAccelerationMaskaccel);

Program card for execution of the function 'accel' with the 'state' 'state >modified'– Program card for execution of the function accel with the state . state->modified
contains information about changed entries. This function has to set at least 'accel' in
'state->set'. The driver should remember 'state->modified' and clear it. The driver may
modify 'funcs' depending on 'state' settings.

15-17 April, 2008 22ELC 2008

22 Graphics Device Functions 22 Graphics Device Functions
(contd)(contd)(contd.)(contd.)

bool (*FillRectangle) (void *driver_data, void
*device_data, DFBRectangle *rect);
bool (*DrawRectangle) (void *driver_data, void
*device_data, DFBRectangle *rect);
bool (*DrawLine) (void *driver data, voidbool (DrawLine) (void driver_data, void
*device_data, DFBRegion *line);
bool (*FillTriangle) (void *driver_data, void
*device data, DFBTriangle *tri);device_data, DFBTriangle tri);

– Drawing functions.

15-17 April, 2008 23ELC 2008

22 Graphics Device Functions 22 Graphics Device Functions
(contd)(contd)(contd.)(contd.)

bool (*Blit) (void *driver_data, void
*device_data, DFBRectangle *rect, intdx, intdy);
bool (*StretchBlit) (void *driver_data, void
*device_data, DFBRectangle *srect, DFBRectangle
*drect);
bool (*TextureTriangles)(void *driver_data, void
*device_data, DFBVertex *vertices, int num,
DFBTriangleFormation formation);g)

– Blitting functions.

15-17 April, 2008 24ELC 2008

22 Graphics Device Functions 22 Graphics Device Functions
(contd)(contd)(contd.)(contd.)

void (*StartDrawing)(void *driver_data, void
*device_data, CardState *state);

– Signal beginning of a sequence of operations using this state. Any
number of states can be 'drawing'.

void (*StopDrawing)(void *driver data, voidvoid (StopDrawing)(void driver_data, void
*device_data, CardState *state);

– Signal end of sequence, i.e. destination surface is consistent again.

15-17 April, 2008 25ELC 2008

How How DirectFBDirectFB Calls Hardware Calls Hardware
Accelerator?Accelerator?Accelerator?Accelerator?

1. Check whether the particular functionality is supported by
the hardware by calling CheckState() in the gfxdriverthe hardware by calling CheckState() in the gfxdriver.

2. If the CheckState() tells DirectFB that particular
function is supported by the hardware, then DirectFBy
subsequently calls SetState(). Otherwise, it falls back
to the software rendering.

3 In the S tSt t () all required parameters shall be3. In the SetState(), all required parameters shall be
taken and prepared to be passed to the hardware.

4. After it returns from SetState(), DirectFB finally calls4. After it returns from SetState(), DirectFB finally calls
the appropriate drawing/blitting functions, e.g. Blit().

15-17 April, 2008 26ELC 2008

Advanced Feature Advanced Feature –– Queuing Queuing
Draw/Draw/BlitBlit CommandsCommandsDraw/Draw/BlitBlit CommandsCommands

Some graphics accelerator supports command
queuing or command lists To utilize this feature youqueuing or command lists. To utilize this feature, you
may queue draw/blit as much as you can, and then
kick the hardware.
To do this, EmitCommands() should be defined.
See the example in sh7722 gfxdriver.

15-17 April, 2008 27ELC 2008

ScreensScreens

Screens represent output device, e.g. LCD.
If h fi d i th i i l f tiIf you have fixed size screen, the minimal functions
you need to define are:
– InitScreen()InitScreen()
– GetScreenSize()

For more details, see src/core/screens.h., / /

15-17 April, 2008 28ELC 2008

LayersLayers

Layers represent independent graphics buffers.
Th ’ b i ll d b h d h thThey’re basically converged by hardware when they
get displayed on the screen.

Normally alpha blending is applied– Normally, alpha blending is applied.

Layers are required to be able to:
– Change size, pixel format, buffering mode and CLUT.Change size, pixel format, buffering mode and CLUT.
– Flip buffer.

For more details, see src/core/layers.h.

15-17 April, 2008 29ELC 2008

Important Important DisplayLayerFuncsDisplayLayerFuncs

LayerDataSize()
– Returns size of layer data to be stored in shared memory.

R i D t Si ()RegionDataSize()
– Returns size of region data to be stored in shared memory.

InitLayer()
Initialize layer Called only once by master process– Initialize layer. Called only once by master process.

TestRegion()
– Check if given parameters are supported.

SetRegion()SetRegion()
– Program hardware with given parameters.

RemoveRegion()
– Remove the region.g

FlipRegion()
– Flip the frame buffer.

15-17 April, 2008 30ELC 2008

Layers Layers –– Change ConfigurationChange Configuration

1. The DirectFB core calls TestRegion() first, to see
if the configuration is supported or notif the configuration is supported or not.
TestRegion() should return DFB_OK, if the
configurations are supported. Otherwise, g pp ,
DFB_UNSUPPORTED and details should be returned.

2. The DirectFB core then calls SetRegion(). In the
SetRegion(), you should apply all changes to the
hardware.

15-17 April, 2008 31ELC 2008

Layers Layers –– FlipFlip

If you support double buffer or triple buffer, you
should implement the feature in FlipRegion()should implement the feature in FlipRegion().
FlipRegion() is called whenever the flip is
neededneeded.

15-17 April, 2008 32ELC 2008

Surface AllocationSurface Allocation

DirectFB 1.0 used use single one-dimensional linear
Surface allocator.
– When a surface is requested with DSCAPS_VIDEOONLY, built-

in surface manager allocated surface from a contiguous
memory block.y

– When a surface is requested with DSCAPS_SYSTEMONLY,
the surface is allocated using malloc().

– For embedded graphics accelerator e g to utilize simple blitterFor embedded graphics accelerator, e.g. to utilize simple blitter,
you’re likely required to use physically contiguous memory, i.e.
DSCAPS_VIDEOONLY is only option.

Only way to customize surface allocation was throughOnly way to customize surface allocation was through
Layer Driver API, mostly for primary surfaces.
– Rarely used in R1, although quite interesting feature.

15-17 April, 2008 33ELC 2008

Allocating Primary Surface Your Allocating Primary Surface Your
WayWayWayWay

DirectFB automatically allocates primary surface by using
given size, pixel format, byte pitch alignment and byte g , p , y p g y
offset alignment values.
– For most hardware, this is enough.

However some hardware requires specific way to allocateHowever, some hardware requires specific way to allocate
frame buffer.
– E.g., a hardware requires 4KB fixed size video pitch, and for

ffi i it i t l t b ll t d id bmemory efficiency it requires two layers to be allocated side-by-
side.

You can always override surface allocation mechanism,
and allocates memory your way.
– This is done in fbdev system as well.

15-17 April, 2008 34ELC 2008

Allocating Primary Surface Your Way Allocating Primary Surface Your Way
(Contd)(Contd) –– Normal Memory AllocationNormal Memory Allocation(Contd.) (Contd.) Normal Memory AllocationNormal Memory Allocation

2,048bytes

Layer 0 – buffer 0

08
0

lin
es

1,

Layer 0 – buffer 1Layer 0 buffer 1

This is typical frame buffer
allocation for 2 double bufferedLayer 1 – buffer 0 allocation for 2 double buffered
layers with CLUT8 in Full HD,
i.e. 1980x1080x8bit.

Layer 1 – buffer 1

15-17 April, 2008 35ELC 2008
1,980 bytes

Allocating Primary Surface Your Allocating Primary Surface Your
Way (Contd)Way (Contd) –– Optimized AllocationOptimized AllocationWay (Contd.) Way (Contd.) –– Optimized AllocationOptimized Allocation

4,096 bytes (Fix Video Pitch. H/W Constraint)

es

Layer 0 – buffer 0 Layer 1 – buffer 0

1,
08

0
lin

e

Layer 0 – buffer 1 Layer 1 – buffer 1

15-17 April, 2008 36ELC 2008

2,048bytes 1,980 bytes

Allocating Primary Surface Your Allocating Primary Surface Your
Way (Contd)Way (Contd)Way (Contd.)Way (Contd.)

1. Define AllocateSurface() and
ReallocateSurface() in DisplayLayerFuncs.
– You should just make sure you create an appropriate

container for surface, i.e. CoreSurface.
2. Allocate or reallocate surface in SetRegion().

– May claim video memory by calling dfb_surface_create(),
and resize if necessary with dfb_surface_reformat().

– Should claim the memory from video memory.
– Don’t forget to call dfb_surface_globalize() to make this

surface visible to others as well.
– Set primary surface’s video memory offset appropriately:

front buffer->video offset back buffer-front_buffer->video.offset, back_buffer-
>vidoe.offset, and idle_buffer->video.offset.

15-17 April, 2008 37ELC 2008

New Surface PoolNew Surface Pool

Starting from DirectFB 1.1, DirectFB introduced new
concept Surface Poolconcept – Surface Pool.
– http://www.directfb.eu/wiki/index.php/DirectFB_2.0:_Surface

_Pools

Now you can manage surface buffer your way!

15-17 April, 2008 38ELC 2008

New Surface Pool (contd.)New Surface Pool (contd.)

Core Surface
Pixel data is

h ld hCore Surface

C S f B ffCore Surface BufferCore Surface BufferCore Surface BufferCore Surface Buffer

not held here.
Only meta
information is
kept here.

Core Surface BufferCore Surface BufferCore Surface Buffer
Query whether
particular surface
configuration is

kept here.

Core Surface Pool Core Surface Pool

g
available.

Core Surface Pool Core Surface Pool

C S f All ti
Core Surface Allocation

Core Surface Allocation
C S f All ti

Core Surface Allocation
Core Surface Allocation

Core Surface Allocation Core Surface Allocation

Pixel data is
h ld h

15-17 April, 2008 39ELC 2008

held here.

New Surface Pool (contd.)New Surface Pool (contd.)

Surface Pools are the new key abstraction to break out of this limited model,
which only did a good job for Linux' Frame Buffer Device or other Low
Level APIs also (part of) /dev/memLevel APIs, also (part of) /dev/mem.
The big step was moving away from the hardcoded system<->video heap
logic including sync, transfer, locking, etc. to a generic mechanism with any
number of heaps/pools with totally different capabilities, allowing
system/driver module to provide their own implementations (pools) just likesystem/driver module to provide their own implementations (pools) just like
input drivers (devices).
Surface Pool Negotiation is one of the key aspects, because it routes
allocation requests for surface buffers to the correct pool, or the best
suitable when more than one is supporting all required access flags e gsuitable when more than one is supporting all required access flags, e.g.
CPU/GPU, surface type flags, e.g. Layer or Font, and other criteria that will
be added.
After a surface has been created as a CoreSurface (FusionObject), based
on the chosen CoreSurfaceConfiguration the CoreSurfaceBuffer structureson the chosen CoreSurfaceConfiguration, the CoreSurfaceBuffer structures
are allocated and added without any actual allocation of pixel data
happening. Even after returning, the buffers are still virtual entities. The first
Lock or Write will trigger the negotiation, before allocation/locking in the
right pool happensright pool happens.

From:http://www.directfb.eu/wiki/index.php/DirectFB_2.0:_Surface_Pools15-17 April, 2008 40ELC 2008

HAVE FUN WITH HAVE FUN WITH DIRECTFBDIRECTFB!!

15-17 April, 2008 41ELC 2008

