
Optimize uClinux for ARM
Cortex-M4

Jim Huang <jserv.tw@gmail.com>
Jeff Liaw <rampant1018@gmail.com>

Mar 23, 2015
Embedded Linux Conference

mailto:jserv.tw@gmail.com
mailto:rampant1018@gmail.com

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.
Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2015 Jim Huang

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Agenda

Use uClinux for Your Own Devices

Evaluate uClinux

storage

performance

Optimizations

Pending Issues

Use uClinux for Your Own Devices

uClinux vs. Linux

Generally Smaller

No memory protection

Optional MPU

No virtual memory (demand loading)

Can do XIP

Source level compatibility

mmap(), fork, sbrk()

Flat format instead of ELF

uClinux vs. Bare-Metal

Linux device drivers

Linux software stack

No need for simulations

Reuse/share code with full Linux

Use existing technologies

uClinux vs. RTOS

Free software + open source technologies

Well-developed applications

Stable and portable

(almost) POSIX compliant

Device driver and software stack (net, usb, bluetooth)

uClinux Advantages

Cheaper hardware prototyping

Reusable with full Linux

Cortex-M share Thumb2 instructions with Cortex-A

File systems

Networking

ARM Cortex-M

built on the ARMv7-M architecture

Cortex-M3/M4: 1.25 DMIPS/MHz with a 3-stage pipeline,
multiple 32-bit busses, clock speeds up to 200 MHz

Cortex-M4 adds a range of saturating and SIMD instructions
specifically optimized to handle DSP algorithms

ideal target for uClinux

developed for ARM7

Faster & more efficient

Use Case: OpenMV

low-cost, extensible, Python-powered machine vision modules,
that aims at becoming the Arduino of machine vision

Hardware: STM32F4xx at 168/180MHz

kernel is configured to XIP

not relocated to SDRAM and runs directly from flash

the 2MBs of flash hosts the u-boot bootloader, kernel image and
the romfs

takes less than 1 sec to boot

Use Case: OpenMV

Features

Scriptable in Python3

$15 BOM

2MP RGB/YUV/JPEG sensor (OV2640)

Recording/Streaming MJPEG: to SD or via external WiFi shield.

16MB SDRAM: on-board enables uClinux to run

Image processing:

object detection; template matching; face recognition

Wireless expansion: CC3K module from TI

Use Case: EFM32 Giant Gecko

energy sensitive applications with high memory and connectivity
requirements

Cortex-M3: capable to run uClinux, up to 48 MHz

Measured current when system idle: 1.6 mA

source: https://www.youtube.com/watch?v=3WS3pvsOmp4

Use Case: WiFi Sniffing Encryption

Features

High security 64/128/256bit WEP Encryption,
TKIP, WPA, 802.11

cross-compile the Aircrck program to Thumb2
for Cortex-M3.

To use Aircrack to capture enough packets
of a WEP wireless network.

After we have captured enough packets we
will decrypt the password.

Source: http://wiesel.ece.utah.edu/redmine/projects/wesec/wiki

Evaluate uClinux

Considerations

Storage requirements

vague & architecture-dependent

RAM/persistent, XIP, root file system

Performance issues

Boot time, latency, overhead

Application optimizations

Reference design:
STM32F2 + Realtek 802.11b/g
small formfactor

Storage Requirements

storage estimations:

RAM: 8+ MB (+something for userspace)

Persistent: 2+ MB (+some for filesystem)

Estimations for XIP

RAM: 1+ MB (+something for userspace)

Persistent: 4+ MB (+some for filesystem)

XIP support for ARM

eXecute In Place

.text segment can reside in flash memory and need not be
copied to RAM at all

Kernel XIP

General setup->Kernel Execute-In-Place from ROM (=y)

General setup->Kernel .text physical address = 0xNNNNNNNN

Source: Running uClinux on ARM Cortex-M3 Platform, Fujitsu
Computer Technologies Limited

External SRAM

STMicro STM32F4xx

up to 256 KB RAM

up to 2MB flash

In addition, external SRAM is supported

STM32F429i Discovery is equipped with 8MB SDRAM chip

SDRAM memory chip is connected to SDRAM bank 2 of
Flexible Memory Controller of STM32F429 MCU.

SDRAM memory can be used as frame buffer for big LCDs (up to
800x600).

Preferable Design

Hardware configurations (STM32F429i Discovery)

ARM Cortex-M4!

only SRAM, no DRAM!

only NOR flash (possibly uSD/eMMC)

Kernel size: 700 KB XIP image

Source tree: https://github.com/uclinux-cortexm

size vmlinux

 text data bss dec hex filename

 656818 66656 51856 775330 bd4a2 vmlinux

Linux Root Filesystem

Root filesystem: XIP/Squashfs!

executables come uncompressed

The whole size reaches 900 KB for internet-enabled
applications

Need extra 64 KB for JFFS2 filesystem

Performance Issues

Always remember: CPU frequency is generally < 200 MHz

Boot time

Latency

Generally higher than RTOS

Overhead

Generally higher than RTOS

But... applications might benefit from the optimizations done by
open source communities

We will discuss later

Optimizations: Interrupt Latency

Realtime Capability of Linux

Linux is originally for PCs. PCs have faster CPUs and larger
memory and disks, compared to customized control systems

PREEMPT_RT is a mechanism to respond faster to the external
inputs

Making in-kernel locking-primitives (using spinlocks)
preemptible by reimplementing with rtmutexes.

Implementing priority inheritance for in-kernel spinlocks and
semaphores.

Converting interrupt handlers into preemptible threads

CPU Frequency vs. Response Time

Source: Evaluation of uClinux and PREEMPT_RT for Machine
Control System, Hitachi, Ltd

CPU Frequency vs. Response Time

Source: Evaluation of uClinux and PREEMPT_RT for Machine
Control System, Hitachi, Ltd

Cyclictest on STM32F407 (168MHz)

Source: Evaluation of uClinux and PREEMPT_RT for Machine
Control System, Hitachi, Ltd

Average:
uClinux: 440 us
uClinux + PREEMPT_RT: 1024 us

Cyclictest on STM32F407 (168MHz)

Source: Evaluation of uClinux and PREEMPT_RT for Machine
Control System, Hitachi, Ltd

WCRT:
uClinux: 15090 us (!)
uClinux + PREEMPT_RT: 1808 us

●Max latency is very important for realtime systems
● developers have to define deadlines for periodical procedures.

● uClinux is better in worst case with PREEMPT_RT

Optimize IRQ latency

uClinux’s IRQ latency is shorter with PREEMPT_RT

Max latency could be 80us if code + data of IRQ context are
placed in SRAM rather than reported max latency 1808 us

The overhead is still quite higher!

Measured latency:
82 us

Source: A Beginner’s Guide on Interrupt Latency - and Interrupt
Latency of the ARM Cortex-M processors

Optimizations: Boot Time

Enable XIP
Experiments on STM32F42x

Start-up time

u-boot is 41% faster

Kernel is 18% slower

u-boot + kernel combination is almost the same

It is worthy for kernel because

lower RAM reserved by kernel

more free RAM for applications

No u-boot
Directly load Linux kernel by really small program

Fast!
__attribute__((section(".vector_table")))

void (*vector_table[16 + 91])(void) = { void (*))&_stack_top, reset, …};

void reset(void) {

 unsigned int *src, *dst;

 asm volatile ("cpsid i"); src = &_end_text; dst = &_start_data;

 while (dst < &_end_data) *dst++ = *src++;

 dst = &_start_bss;

 while (dst < &_end_bss) *dst++ = 0;

 main();

}

Source: https://github.com/afaerber/afboot-stm32

Tiny boot loader
int main(void)

{

 volatile uint32_t *FLASH_KEYR = (void *)(FLASH_BASE + 0x04);

 …

 clock_setup();

 …

 ptr = (void *)0xD0000000UL;

 i = 0x00800000UL / sizeof(*ptr); while (i­­ > 0) *ptr++ = 0;

 ….

 void (*kernel)(uint32_t reserved, uint32_t mach, uint32_t dt) =

 (void (*)(uint32_t, uint32_t, uint32_t))(0x08008000 | 1);

 kernel(0, ~0UL, 0x08004000);

}

Optimizations: Toolchain

Build Your Own uClinux Toolchain

The official site uclinux.org maintains source distribution along
with specific GNU Toolchain, but it was too old for our
experiments

OSELAS.Toolchain() project provides a complete build system
for recent GNU toolchains.

uses PTXdist build system

http://www.pengutronix.de/oselas/toolchain/download/

TARGET “arm-cortexm3-uclinuxeabi” in Release 2014.12

arm-cortexm3-uclinuxeabi

gcc-4.9.2, uclibc-0.9.33.2, binutils-2.24, kernel-3.16

GCC & Thumb2
Kernel is 29% smaller in Thumb-2 compared to ARM

Reported by “Experiment with Linux and ARM Thumb-2 ISA”, Philippe Robin

However, we might encounter compiler optimization issues

Source: drivers/char/random.c

static ssize_t extract_entropy(struct entropy_store *r, void *buf,

 size_t nbytes, int min, int reserved)

{

 __u8 tmp[EXTRACT_SIZE] __attribute__((aligned(32)));

...

 while (nbytes) {

 extract_buf(r, tmp);

 if (r­>last_data) { ...

 memcpy(r­>last_data, tmp, EXTRACT_SIZE);

 In extract_buf(), hash will be copied to out.
Compiler optimizes memcpy() aggresively
and does not test the unaligned destination
address. Therefore, we have to specify
aligned attributes to tmp[]

minimize the literal load

gcc-4.9 supports a new option, ­mslow­flash­data, which
assumes that loading data from flash is slower than fetching
instruction.

Therefore literal load is minimized for better performance.

Memory operations

Generally, 2x speed up

ARM contributes a customized memcpy routine optimisez for
Cortex-M3/M4 cores with/without unaligned access. (newlib)

Step 1: Align src/dest pointers, copy mis-aligned if fail to align both

Step 2: Repeatedly copy big block size of __OPT_BIG_BLOCK_SIZE

Step 3: Repeatedly copy big block size of __OPT_MID_BLOCK_SIZE

Step 4: Copy word by word

Step 5: Copy byte-to-byte

Tunable options:

__OPT_BIG_BLOCK_SIZE: Size of big block in words. Default to 64.

 __OPT_MID_BLOCK_SIZE: Size of big block in words. Default to 16.

Utilize Hardware FPU

CM4 with
Hardware FP

CM4 with
Hardware FP

CM4 with
Software FP

CM4 with
Software FP

CM3 with
Software FP

CM3 with
Software FP

RLSDFRLSDF 5.86μs5.86μs 43.20μs43.20μs 22

Control Task
CPU load

Control Task
CPU load 4.2%4.2% 35.3%35.3% 2727

Total CPU loadTotal CPU load 13.1%13.1% 63.2%63.2% 1313

Source: “A Self Tuning Regulator based on the ARM Cortex-
M4”, R ́omulo Ant ̃ao, Alexandre Mota, Rui Escadas Martins

Algorithms' turnaround time and CPU load measurements

Hardware: Cortex-M3 NXP LPC1759 operating at its maximum core speed
of 120MHz.

Auto-reduce Project
Find automated ways to reduce the kernel

Link-time optimization

System call elimination

Kernel command-line argument elimination

Kernel constraint system

Additional research

Link-time re-writing

Cold-code compression

Source: Advanced Size Optimization of the Linux Kernel, Tim Bird

Link Time Optimization
LTO is a new GNU toolchain feature (gcc 4.7+)

Save extra meta-data (GIMPLE) at compile-time

Use meta-data at link time to do whole-program optimization

Option: ­flto

Has slow link step, but better code optimization

LTO Benefits
Opens up a whole new class of optimizations

Performance improvements:

No visible results for ARM Cortex-M4

Only microbenchmark results available

Size improvement:

~4% kernel size reduction for STM32F429

Potential LTO Benefits
Can automatically drop unused code and data

Partial inlining – e.g. only inline some code, like tests at beginning of
functions

Optimize arguments to global functions

Drop unnecessary args, optimize inputs/outputs, etc.

Detect read-only variables and optimize

Performan constant propagation, and function call
specialization based on that

If a function is called commonly with a constant, make a special version of
the function optimized for that

e.g. kmalloc_GFP_KERNEL()

LTO Benefits
Opens up a whole new class of optimizations

Performance improvements:

No visible results for ARM Cortex-M4

Only microbenchmark results available

Size improvement:

~4% kernel size reduction for STM32F429

FDO in gcc-4.9
Improved FDO (Feedback directed optimization)

New time profiling determines typical order in which functions are
executed.

GCC uses heuristics to guess branch probabilities if they are not provided
by profiling feedback (-fprofile-arcs).

new function reordering pass (controlled by -freorder-functions)
reduces startup time.

effective only with link-time optimization.

Reorder functions in the object file in order to improve code Locality.

using special subsections ".text.hot" for most frequently executed
functions and ".text.unlikely" for unlikely executed functions.

profile feedback must be available to make this option effective.

FDO for device
Stable and fast storage is required: SD/MMC

Significant changes against the existing build procedure to
satisfy the “build-run-build” model

Complex C++ programs like Qt can benefit from the
combination of ­freorder­functions and ­flto

Optimizations: Kernel Parameters

Kernel Parameters
Module parameters for loadable modules are specified only
as the parameter name with optional '=' and value as
appropriate:

modprobe usbcore blinkenlights=1

Parameters denoted with BOOT are actually interpreted by
the boot loader, and have no meaning to the kernel directly

For deeply embedded devices, we don't really need kernel
command line since we might have no way to configure

Defined with _setup() and early_param() macros from

include/linux/init.h

12 KB reduction if we eliminate the handling

Pending Issues

Problems

Rubustness of Thumb2 toolchain optimizations

In-kernel debugging tools are too heavy and impractical for
Cortex-M.

#error "CONFIG_TRACE_IRQFLAGS not supported on the
current ARMv7M implementation"

(source: arch/arm/kernel/entry-v7m.S)

OLD codebase without collaboration

Recently, upstreaming is on-going...

From Maxime Coquelin

Subject [PATCH v3 00/15] Add support to STMicroelectronics STM32 family

Date Thu, 12 Mar 2015 22:55:46 +0100

TODO: Tickless kernel

kernel maintains a "kernel ticker" timer that triggers an interrupt
at a fixed frequency

allowing the Linux scheduler to resume those processes for which timer-
related events may have occurred → a software timeout may have
expired for a process

Default kernel ticker rate is 100 Hz

even when the system can be fully idle, the kernel would still wake up
and switch back to dynamic power consumption levels 100 times per
second → unnecessary increasing the overall power consumption.

Tickless: kernel does not wake up at a 100Hz rate using the
normal kernel ticker but instead explicitly keeps track of all
timer-related events and calculates when exactly the system
needs to wake-up next

TODO: Tickless kernel

hrtimer is critical for tickless but not available on evaluation
environment

STM32 System Timer is used as clockevent.

Migrate to 3.10+ for full tickless operation
(CONFIG_NO_HZ_FULL)

disabling the tick for non-idle processors

Fair and comprehensive measurements required

TODO: True Preemptive Kernel

Initially, kernel threads runs in Handler mode with SVCall
priority.

Disadvantage: kernel preemption is not possible since the
Handler mode cannot be preempted by the Thread mode.

Exception handling code can be improved

only runs for a short time and switches to the privileged
Thread mode for executing the rest of the kernel code

acts as the tiny dispatcher responsible for switching between
kernel and user applications and passing arguments

Conceptually compatible with the expectation of
PREEMPT_RT

Conclusion

BYOD with uClinux is quite reasonable for targets of rich features

The techniques to improve uClinux are basically the same as
ARM-Linux, but we need more aggressive methods to tweak
certain areas such as toolchain optimization, boot loader, tickless
kernel, and PREEMPT_RT.

Few ARMv7-M boards (only efm32) are supported by mainline
kernel. Need more efforts for upstreaming.

There is still room for satisfying the constraints of deeply
embedded devices especially when in-kernel debugger/tracker are
enabled.

Reference

Spreading the disease: Linux on microcontrollers, Vitaly Wool

OpenMV: https://hackaday.io/project/1313-openmv

Advanced Size Optimization of the Linux Kernel, Tim Bird

Evaluation of uClinux and PREEMPT_RT for Machine Control
System, Hitachi, Ltd

Running uClinux on ARM Cortex-M3 Platform, Fujitsu Computer
Technologies Limited

	Kernel Development with VirtualBox
	Rights to copy
	Slide 3
	Introduction
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Conclusion
	Slide 54

