
A method to detect memory leaks & corruption

 Who are we?
 Why another tool?
 Tool features

 The idea
 Implementation
 Limitations
 Download
 Questions

Ravi Sankar Guntur
ravisankar.g@gmail.com

27th Oct 2010

References:
 Glibc Manual (3.2.2.9 Heap Consistency Checking)

 http://duma.sourceforge.net/
 http://valgrind.org/
 http://sourceware.org/binutils/docs-2.20/ld/index.html
 http://g.oswego.edu/dl/html/malloc.html

 http://library.gnome.org/devel/glib/stable/glib-running.html

1

mailto:ravi.g@samsung.com

2

Who are we?

Part of team that works at Samsung India, Bangalore, for developing a Smart-phone platform

based on GNU/Linux.

 Platform
– ARM Processor.
– 256 MB main memory.

 Major portion of debugging time spent on fixing memory leaks and memory corruption issues.

2

Vodafone - Samsung H1

3

Why we wanted another tool?

Tools we tried,
• Memory leaks

• GNU libc’s mtrace

• Valgrind – memcheck
• memprof

• Memory corruptions
• GNU libc’s MALLOC_CHECK_=2
• DUMA (efence)
• Valgrind - memcheck

• Issues
• Huge memory overhead.

• No support for GUI scenario based testing
• Separate tools for memory leak and corruption
• No support of call graph

3

4

Tool features

4

• Less memory overhead
• Provides call graph
• Support for scenario based memory leak testing

• Single tool to detect memory leaks and heap consistency

Memory leak report… Memory corruption report…

backtrace backtrace

5

The Idea – Memory Leak

“For every allocated block add Header and Footer. Add
size and caller information in the Header”
“Erase the Header & Footer, before de-allocating the
block”
”Scan the heap region for yet un-freed blocks and
construct the call graph for every block found”

5

6

The implementation

6

Size Header
Sig1

Header
Sig2

MODE # of
Frames

Frame1 ---- Frame
30

User
Data

Footer
Sig1

Footer
Sig2

Size Header
Sig1

Header
Sig2

MODE # of
Frames

Frame1 ---- Frame
30

User
Data

Footer
Sig1

Footer
Sig2

28 0xdead
beef

0xabc
defff

1 12 0x400
01234

NULL 0xcafe
babe

0xdeaf
feed

Size Header
Sig1

Header
Sig2

MODE # of
Frames

Frame1 ---- Frame
30

User
Data

Footer
Sig1

Footer
Sig2

80 0xdead
beef

0xabc
defff

0 12 0x400
01234

NULL 0xcafe
babe

0xdeaf
feed

HEADER FOOTER

Buffer typedef

HEADER FOOTER

Buffer allocated when memory leak check is ON

HEADER FOOTER

Buffer allocated when memory leak check is OFF

7

The implementation – Memory leak

7

Generate memory leak report

Block1 Block2 Block3

Free Block5

Block5

Block6 Free

Example heap layout

8

The Idea – Memory corruption

“One of the source of memory corruption is wrong usage of

parameters to lib C’s string manipulation functions”

“use LD_PRELOAD to preload DSO of modified functions”

“Given destination buffer, get the size from Header and check

for possible memory corruption”

8

9

The implementation – Memory corruption

To check heap consistency,

• Preloaded string wrappers check if the destination address is
from heap region or not.

• If from heap

• Checks the validity of the buffer.

• Checks if number of bytes > allocated size.

• If yes, error details will be written to log file and
SIGSEG will be raised.

• If no, proceed normally

• if not from heap, proceed normally

• realloc, calloc, and free will check header and footer for
integrity.

9

10

Limitations

• Shell script sets up the environment variables like

LD_PRELOAD, LEAK_MODE, G_SLICE and launches the
debugged program.

“-fno-omit-frame-pointer” is needed for backtrace()
if no “-rdynamic”, use addr2line to convert VMA to Symbol

name.

10

11

Download

Integrated tool with couple of bug fixes is not yet uploaded

to public domain. (contact the author to check the latest
status)

Separate tools to detect memory corruption and leaks are
available at,

git clone git://git.savannah.nongnu.org/safeheap.git
git clone git://git.savannah.nongnu.org/memleak.git

11

12

Questions

12

13

END...

13

