
Debian and Yocto Project based

Long-term Maintenance Approaches

for Embedded Products

Jan Kiszka, Siemens AG

Kazuhiro Hayashi, Toshiba Corporation
Embedded Linux Conference Europe 2019, Oct. 28th 2019



About us

• Kazuhiro Hayashi <kazuhiro3.hayashi@toshiba.co.jp>
• Working for Toshiba Corporation

• (In-house) Embedded Linux development for products, consultant

• Member of CIP, developing tools of CIP Core

• Contribute to Linux and other OSS projects

• Jan Kiszka <jan.kiszka@siemens.com>
• Working for Siemens Corporate Technology

• (In-house) Embedded Linux consultant & developer

• Member of CIP, isar-cip-core development, some CIP kernel backports

• Maintainer of and contributor to various OSS projects

Embedded Linux Conference Europe 2019 2



Agenda

• Requirements in Industrial Product Development

• CIP as the solution

• What is “CIP Core”?

• CIP Core implementation

• Isar

• Deby

• Building products on top of CIP Core

• Future plans

Embedded Linux Conference Europe 2019 3



Requirements in Industrial Product Development

Embedded Linux Conference Europe 2019 4

D
e
v
e
lo

p
m

e
n

t
Start

Release

M
a
in

te
n

a
n

ce

• Quick release

• Porting

• OS/middleware development

• Application development

• Installation

• Testing

• Development release

• Product Certification

• Publication

• Bug fix, security fix

• System update

• Architecture & board support

• Customizability, Scalability

• Standalone SDK

• Ready-to-use image generation

• Stability

• License clearing

• Long-term maintenance

• Verified & automated update

• Modularity for multiple projects



What to Do First…

• Select appropriate base system

• Linux distribution

• Provide tools for integrating
the base system into products

• Build system, etc.

Embedded Linux Conference Europe 2019 5

• Quick release

• Architecture & board support

• Customizability, Scalability

• Standalone SDK

• Ready-to-use image generation

• Stability

• License clearing

• Long-term support

• Verified & automated update

• Modularity for multiple projects



CIP is the Solution

Embedded Linux Conference Europe 2019 6

• Product life-cycles of decades

• Backwards compatibility

• Standards

• Reliability

• Functional Safety

• Real-time capabilities

• Security & vunerability managment

• Firmware updates

• Minimize risk of regressions

Industrial 
grade

Sustainability

Security



CIP is the Solution

Embedded Linux Conference Europe 2019 7

CIP Core packages

(tens)

CIP kernel
(10+ years maintenance, based on LTS kernels)

additional

packages

(hundreds)

company-specific middleware and applications

Establishes an “Open Source Base Layer (OSBL)”



CIP Core

• One of the CIP projects focusing on user land software and tools

• Goals

• Define a list of “CIP Core packages” maintained for long-term

• Provide a reference implementation including “CIP Core packages”

• Test the implementation on the “CIP reference hardware”

Embedded Linux Conference Europe 2019 8

SLTS kernel Real-time Testing CIP Core
Security 

WG(*)

Software 
update WG

1 32 4 5 6
(*): Workgroup

✔ ✔ ✔ ✔ ✔ ✔ Industrial grade

✔ ✔ ✔ ✔ Sustainability

✔ ✔ ✔ ✔ ✔ Security

CIP Projects and its scopes



CIP Core

CIP Core: Position in CIP Projects

Embedded Linux Conference Europe 2019 9

Real-Time

Testing

(CI)

CIP Core

Reference Implementation
CIP Core

Packages

Request Packages & Configurations

Build & Integrate

Deploy

Tested on targets

Software update WGCIP members

Discussion & Decide

CIP Reference Hardware

SLTS kernel

Security

WG
Build Tool



CIP Core: Implementation

• Debian-based implementation

• Mature, high-quality, mainstream distro.

• Many new & old architecture supports

• Suitable for small and big installations

• Security updates

• Profiles

Embedded Linux Conference Europe 2019 10

Generic profile Tiny profile

Approach Binary packages Source packages

Tool Isar Deby CIP Core

Tiny profile

Generic profile

Build tools

• Add packages, send patches, etc.
• Funding to Debian LTS

Metadata

meta-debian

Contribution

Isar

Binary
packages

Source
packages

Use

CIP Core Project

Use

Implement



Deby (meta-debian)

• Yocto Project extension for using Debian source packages
• Source code: Debian
• Build system: Yocto Project 

• Goals
• Achieve stability and long-term support with the Yocto advantages

• Features: Yocto based flexibility & extensibility
• High customizability by own recipes
• Small footprint (Around 2MB)
• Various target CPUs and tunings
• Adaptation to BSP layers provided by board vendors

• Repositories
• Upstream: https://github.com/meta-debian/meta-debian
• CIP Core: https://gitlab.com/cip-project/cip-core/deby

Embedded Linux Conference Europe 2019 11

https://github.com/meta-debian/meta-debian
https://gitlab.com/cip-project/cip-core/deby


Deby: How it works

Embedded Linux Conference Europe 2019 12

meta-debian

(Deby)

poky meta

meta-bspX

bitbake

meta-custom app.bb

debian-package.bbclass

pkgB.bb pkgC.bb pkgD.bb

meta-bspY

pkgA.bb .conf

kernel rootfs

SDK

pkgB.bbappend

.bbclass

kernel rootfs

SDKU-Boot

Board X Board YQEMU

kernel rootfs

SDKU-Boot

Upstream

sources

Extra

sources
Debian sources



Isar

• Integration System for Automated Root filesystem generation
https://github.com/ilbers/isar

• Goals
• Build systems in a Debian way

• Developer-centric workflow: One-command building

• Make customizations easy and repeatable

• Efficient building

• The best of both worlds
• Debian: Tested binary packages, tools, security updates

• OpenEmbedded / Yocto: bitbake, recipes, layers

• Reuse Yocto knowledge of developers

Embedded Linux Conference Europe 2019 13

https://github.com/ilbers/isar


Image Generation Sequence of Isar

1. debootstrap Debian for target,
also for host if cross-building

2. Create buildchroots (target and host)

3. Build custom Debian packages
• pre-debianized packages
• ad-hoc debianized packages (customizations, u-boot, kernel, …)

4. Assemble rootfs
• debootstrap output
• external packages
• self-built packages

5. Run images (typically wic)
• Filesystem image generation
• Partitioning
• Bootloader installation and configuration

Embedded Linux Conference Europe 2019 14



Example: Building Images for BeagleBone Black

• Generic profile (Isar)

• Tiny profile (Deby)

Embedded Linux Conference Europe 2019 15

$ git clone https://gitlab.com/cip-project/cip-core/deby && cd deby
$ ./scripts/setup-kas-docker.sh
$ ./kas-docker build kas-bbb.yml

$ git clone https://gitlab.com/cip-project/cip-core/isar-cip-core && cd isar-cip-core
$ wget https://raw.githubusercontent.com/siemens/kas/master/kas-docker
$ chmod a+x kas-docker
$ ./kas-docker --isar build kas.yml:board-bbb.yml
$ dd if=/path/to/cip-core-image-cip-core-buster-bbb.wic.img of=/dev/mmcblk0 ...

https://gitlab.com/cip-project/cip-core/deby
https://gitlab.com/cip-project/cip-core/isar-cip-core
https://raw.githubusercontent.com/siemens/kas/master/kas-docker


Preferred Use Cases

Embedded Linux Conference Europe 2019 16

Isar (Generic Profile) Deby (Tiny Profile)

Available Packages = Debian App. 50 (+ Yocto Extension)

Footprint > 100MB 2MB - 100MB

Compatibility Debian (Binary packages) Yocto Project (Recipes)

Required skill set Debian (Packaging)
bitbake

Yocto Project

Build time (minimal image) Around 10min Around 1h

Customization needs Selected packages Up to toolchain settings

Fitted systems (Examples) IoT gateways, edge devices, 
industrial controllers
…

Small IoT devices
…



GitLab (cip-project/cip-core)

CIP Core: Testing Architecture

Embedded Linux Conference Europe 2019 17

Control

LAVA Worker

Deploy

LAVA Worker

LAVA Master

Artifact Storage

(AWS S3)

Build Server (GitLab Runners on AWS)

isar-cip-core deby

isar meta-debian

Build Request

LAVA Worker

Built Artifacts

Test Request

Pull updates Pull updates

CIP Reference Hardware

Job scheduling & Summarizing results

Kernel, Boot loader, rootfs



Building Products on Top of CIP Core

• Requirements
• Customize base layer

• Add product applications

• BitBake layering
• Append changes to lower layers easily

• Reuse company / product common elements

• Available in both CIP Core profiles

• Current approaches in CIP members
• Building products using this pattern

on upstream projects (Isar, Deby)

• Quicker integration of CIP results desired

Embedded Linux Conference Europe 2019 18

Isar

meta-company

meta-bsp-a

meta-product-x meta-product-y

meta-libs

meta-product-line

meta

meta-bsp-b

(Example of using “Isar”)



Future Plans for CIP Core Implementation

• Enable direct use in product development

• Regular releases of tested layer with dependencies

• Mirroring of source & binary dependencies

• Provide image corresponding to CIP package list

• Integrate and test results of other CIP workgroups

• Robust system update (Software update WG)

• Functions to meet cybersecurity standard requirements (Security WG)

Embedded Linux Conference Europe 2019 19



Summary

• CIP provides long-term maintained Open Source base layer, consisting of 
kernel and essential packages

• CIP Core defines package set and ensures integration

• Two implementation flavors available

• Deby for smaller, Yocto/OE-compatible projects

• isar-cip-core for medium to larger, Debian-compatible projects

• More product-ready features to come, from software update to security
hardening

Embedded Linux Conference Europe 2019 20



Questions

Embedded Linux Conference Europe 2019 21


