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About us

• Kazuhiro Hayashi <kazuhiro3.hayashi@toshiba.co.jp>
• Working for Toshiba Corporation

• (In-house) Embedded Linux development for products, consultant

• Member of CIP, developing tools of CIP Core

• Contribute to Linux and other OSS projects

• Jan Kiszka <jan.kiszka@siemens.com>
• Working for Siemens Corporate Technology

• (In-house) Embedded Linux consultant & developer

• Member of CIP, isar-cip-core development, some CIP kernel backports

• Maintainer of and contributor to various OSS projects
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Agenda

• Requirements in Industrial Product Development

• CIP as the solution

• What is “CIP Core”?

• CIP Core implementation

• Isar

• Deby

• Building products on top of CIP Core

• Future plans
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Requirements in Industrial Product Development
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• Quick release

• Porting

• OS/middleware development

• Application development

• Installation

• Testing

• Development release

• Product Certification

• Publication

• Bug fix, security fix

• System update

• Architecture & board support

• Customizability, Scalability

• Standalone SDK

• Ready-to-use image generation

• Stability

• License clearing

• Long-term maintenance

• Verified & automated update

• Modularity for multiple projects



What to Do First…

• Select appropriate base system

• Linux distribution

• Provide tools for integrating
the base system into products

• Build system, etc.
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CIP is the Solution
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• Product life-cycles of decades

• Backwards compatibility

• Standards

• Reliability

• Functional Safety

• Real-time capabilities

• Security & vunerability managment

• Firmware updates

• Minimize risk of regressions

Industrial 
grade

Sustainability

Security



CIP is the Solution
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CIP Core packages

(tens)

CIP kernel
(10+ years maintenance, based on LTS kernels)

additional

packages

(hundreds)

company-specific middleware and applications

Establishes an “Open Source Base Layer (OSBL)”



CIP Core

• One of the CIP projects focusing on user land software and tools

• Goals

• Define a list of “CIP Core packages” maintained for long-term

• Provide a reference implementation including “CIP Core packages”

• Test the implementation on the “CIP reference hardware”
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SLTS kernel Real-time Testing CIP Core
Security 

WG(*)

Software 
update WG

1 32 4 5 6
(*): Workgroup

✔ ✔ ✔ ✔ ✔ ✔ Industrial grade

✔ ✔ ✔ ✔ Sustainability

✔ ✔ ✔ ✔ ✔ Security

CIP Projects and its scopes



CIP Core

CIP Core: Position in CIP Projects
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Deploy
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SLTS kernel

Security
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CIP Core: Implementation

• Debian-based implementation

• Mature, high-quality, mainstream distro.

• Many new & old architecture supports

• Suitable for small and big installations

• Security updates

• Profiles
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Generic profile Tiny profile

Approach Binary packages Source packages

Tool Isar Deby CIP Core

Tiny profile

Generic profile

Build tools

• Add packages, send patches, etc.
• Funding to Debian LTS

Metadata

meta-debian

Contribution

Isar

Binary
packages

Source
packages

Use

CIP Core Project

Use

Implement



Deby (meta-debian)

• Yocto Project extension for using Debian source packages
• Source code: Debian
• Build system: Yocto Project 

• Goals
• Achieve stability and long-term support with the Yocto advantages

• Features: Yocto based flexibility & extensibility
• High customizability by own recipes
• Small footprint (Around 2MB)
• Various target CPUs and tunings
• Adaptation to BSP layers provided by board vendors

• Repositories
• Upstream: https://github.com/meta-debian/meta-debian
• CIP Core: https://gitlab.com/cip-project/cip-core/deby
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https://github.com/meta-debian/meta-debian
https://gitlab.com/cip-project/cip-core/deby


Deby: How it works
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meta-debian
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poky meta

meta-bspX
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debian-package.bbclass
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kernel rootfs
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kernel rootfs

SDKU-Boot
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kernel rootfs
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sources

Extra
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Isar

• Integration System for Automated Root filesystem generation
https://github.com/ilbers/isar

• Goals
• Build systems in a Debian way

• Developer-centric workflow: One-command building

• Make customizations easy and repeatable

• Efficient building

• The best of both worlds
• Debian: Tested binary packages, tools, security updates

• OpenEmbedded / Yocto: bitbake, recipes, layers

• Reuse Yocto knowledge of developers
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https://github.com/ilbers/isar


Image Generation Sequence of Isar

1. debootstrap Debian for target,
also for host if cross-building

2. Create buildchroots (target and host)

3. Build custom Debian packages
• pre-debianized packages
• ad-hoc debianized packages (customizations, u-boot, kernel, …)

4. Assemble rootfs
• debootstrap output
• external packages
• self-built packages

5. Run images (typically wic)
• Filesystem image generation
• Partitioning
• Bootloader installation and configuration
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Example: Building Images for BeagleBone Black

• Generic profile (Isar)

• Tiny profile (Deby)

Embedded Linux Conference Europe 2019 15

$ git clone https://gitlab.com/cip-project/cip-core/deby && cd deby
$ ./scripts/setup-kas-docker.sh
$ ./kas-docker build kas-bbb.yml

$ git clone https://gitlab.com/cip-project/cip-core/isar-cip-core && cd isar-cip-core
$ wget https://raw.githubusercontent.com/siemens/kas/master/kas-docker
$ chmod a+x kas-docker
$ ./kas-docker --isar build kas.yml:board-bbb.yml
$ dd if=/path/to/cip-core-image-cip-core-buster-bbb.wic.img of=/dev/mmcblk0 ...

https://gitlab.com/cip-project/cip-core/deby
https://gitlab.com/cip-project/cip-core/isar-cip-core
https://raw.githubusercontent.com/siemens/kas/master/kas-docker


Preferred Use Cases
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Isar (Generic Profile) Deby (Tiny Profile)

Available Packages = Debian App. 50 (+ Yocto Extension)

Footprint > 100MB 2MB - 100MB

Compatibility Debian (Binary packages) Yocto Project (Recipes)

Required skill set Debian (Packaging)
bitbake

Yocto Project

Build time (minimal image) Around 10min Around 1h

Customization needs Selected packages Up to toolchain settings

Fitted systems (Examples) IoT gateways, edge devices, 
industrial controllers
…

Small IoT devices
…



GitLab (cip-project/cip-core)

CIP Core: Testing Architecture
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Deploy
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isar meta-debian

Build Request
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Built Artifacts

Test Request
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Job scheduling & Summarizing results
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Building Products on Top of CIP Core

• Requirements
• Customize base layer

• Add product applications

• BitBake layering
• Append changes to lower layers easily

• Reuse company / product common elements

• Available in both CIP Core profiles

• Current approaches in CIP members
• Building products using this pattern

on upstream projects (Isar, Deby)

• Quicker integration of CIP results desired
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Isar

meta-company

meta-bsp-a

meta-product-x meta-product-y

meta-libs

meta-product-line

meta

meta-bsp-b

(Example of using “Isar”)



Future Plans for CIP Core Implementation

• Enable direct use in product development

• Regular releases of tested layer with dependencies

• Mirroring of source & binary dependencies

• Provide image corresponding to CIP package list

• Integrate and test results of other CIP workgroups

• Robust system update (Software update WG)

• Functions to meet cybersecurity standard requirements (Security WG)
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Summary

• CIP provides long-term maintained Open Source base layer, consisting of 
kernel and essential packages

• CIP Core defines package set and ensures integration

• Two implementation flavors available

• Deby for smaller, Yocto/OE-compatible projects

• isar-cip-core for medium to larger, Debian-compatible projects

• More product-ready features to come, from software update to security
hardening
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Questions
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