
System Engineering

Linux Development Center

Making Wireless

ELC 2011

The future of Tracing and Profiling
for Power Management and Accelerators

Jean Pihet <j-pihet@ti.com>

v1.0

System Engineering

Linux Development Center

Making Wireless

2

Introduction
Background

● Work on ARMv7 support for oprofile/perf/ftrace
● Work on OMAP PM:

● PM instrumentation,
● (omap_)devices latency support,
● Devices wake-up latencies measurements.

Tracing/profiling is used for : Debug, Profiling, Performance Measurements.

 Tracing and profiling

Two types of tools:
● Profiling (i.e. Generate stats from events),
● Tracing (i.e. Collect events and generate a timeline).

This presentation is focusing on tracing using ftrace and the
 parsing tools (py)timechart.

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

3

Introduction

OMAP SoC PM
● Dynamic and hierarchical PM.

Clock->Pwrdm->Voltdm->
Voltage Regulators

● On-chip devices count & interfaces
● Multiple frameworks involved : cpuidle,

cpufreq, runtime PM

Multiple accelerators
for MM, Crypto ...

Parsing tools & GUI

=> Traditional -static- tools are not suited anymore

=> Challenges for tracing on modern SoCs

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

4

Status of PM & Accel trace events

New PM trace API

● Added clock and power_domain events classes (in the old API)

● power:power_start, power:power_end => power:cpu_idle
● power:power_frequency => power:cpu_frequency
● power:machine_suspend is newly introduced

● 'type' field removed
● Old API & tracepoints kept for backward compatibility, to be removed (.41?).

CONFIG_EVENT_POWER_TRACING_DEPRECATED introduced.

● Unification of cpufreq, cpuidle & suspend tracepoints
● Tracepoints made generic (in drivers/cpu[freq,idle] and kernel/power code)
● removal of duplicated events (in arch & framework code)

● OMAP tracepoints patches

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

5

Status of PM & Accel trace events
● Parsing tools : (py)timechart patches

● trace example : old vs new PM trace API

 <idle>-0 [000] 73.946503: power_start: type=1 state=3 cpu_id=0 OLD
 <idle>-0 [000] 73.946503: cpu_idle: state=3 cpu_id=0 NEW
 <idle>-0 [000] 73.946533: power_domain_target: mpu_pwrdm state=1 cpu_id=0
 <idle>-0 [000] 73.946533: power_domain_target: core_pwrdm state=3 cpu_id=0
 <idle>-0 [000] 73.946594: power_domain_target: neon_pwrdm state=1 cpu_id=0
 <idle>-0 [000] 73.946625: clock_disable: uart3_fck state=0 cpu_id=0
 <idle>-0 [000] 73.946655: clock_disable: per_48m_fck state=0 cpu_id=0
 <idle>-0 [000] 73.953949: clock_enable: per_48m_fck state=1 cpu_id=0
 <idle>-0 [000] 73.953979: clock_enable: uart3_fck state=1 cpu_id=0
 <idle>-0 [000] 73.954010: power_domain_target: dpll1_pwrdm state=2147484417 cpu_id=0
 <idle>-0 [000] 73.954041: power_domain_target: per_pwrdm state=2147484417 cpu_id=0
 <idle>-0 [000] 73.954041: power_domain_target: dss_pwrdm state=2147484417 cpu_id=0
 <idle>-0 [000] 73.954071: power_domain_target: neon_pwrdm state=2147484417 cpu_id=0
 <idle>-0 [000] 73.954071: power_domain_target: mpu_pwrdm state=2147484417 cpu_id=0
 <idle>-0 [000] 73.954193: power_end: cpu_id=0 OLD
 <idle>-0 [000] 73.954193: cpu_idle: state=4294967295 cpu_id=0 NEW

● + pytimechart screenshots: cf. [1]

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

6

Status of PM & Accel trace events

HW accelerators

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

7

Problems
Adding new events
● Contributions to mainline kernel, in generic include files
● Reaction time : submit, review, discuss, re-submit, merge in tip
 kernel...

● API changes that are not generic enough are difficult to merge in

Change of events format, variations : More flexibility is needed

Tracing non occuring PM transitions
A power domain could not transition to the desired power state.
An extra tracepoint is needed to track the cause (return/error code,
register value...).
How to add this tracepoint ?

• In the API
• As a variation of an existing tracepoint, with extra/different parameters.

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

8

Problems

Timestamp generation & alteration

● Timestamp is calculated at generation time
● No direct access to the timestamp field
● How to change the timestamp is case of differed trace generation ?
 E.g. GPU, low level PM transitions with minimum HW support

OMAP clock sources

● OMAP uses 32KHz clock for tracing => 30us resolution
● Need a faster timer as kernel clock source
● Dynamic (auto) switch to the 32KHz when going to low power modes

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

9

Problems
Embedded world
● Trace control & dump are performed on the target while the parsing tools are
 running on the host.

● control tracing (enable/disable, filter),
● dump events trace (data & description)

mount -t debugfs nodev /sys/kernel/debug/
echo 1 > /sys/kernel/debug/tracing/events/power/enable
cat /sys/kernel/debug/tracing/trace_pipe > /tmp/trace.txt
cat /debug/tracing/events/power/power_domain_target/format
name: power_domain_target
ID: 63
format:
 field:unsigned short common_type; offset:0; size:2; signed:0;
 field:unsigned char common_flags; offset:2; size:1; signed:0;
 field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
 field:int common_pid; offset:4; size:4; signed:1;
 field:int common_lock_depth; offset:8; size:4; signed:1;

 field:__data_loc char[] name; offset:12; size:4; signed:0;
 field:u64 state; offset:16; size:8; signed:0;
 field:u64 cpu_id; offset:24; size:8; signed:0;

print fmt: "%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)REC->state,
(unsigned long)REC->cpu_id

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

10

Problems

Events format
● Format detection : from target debugfs
● Format flexibility : how to add new events or variations of events ?

Parsing tools
● Focus on non-embedded systems
● Importing events trace
● Display options

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

11

Solutions
 Format
● Flexibility : variable number of args (à la 'int printk(const char *fmt, ...);')
● Mixed format : description and data in the event

Example : from 'cpu_idle: state=3 cpu_id=0' to 'cpu_idle: state(%lu)=3 cpu_id(%lu)=0'
 => Allows the parsing of variable args events

● Dynamic filtering

Timestamps : TBDiscussed

OMAP clock sources : on-going, patches from TI

 Parsing tools
● Run-time format detection
● Display format options : type of diagram, color, highlighting, field unit/radix ...
● Filtering & stats options
● Using profiles + load/store

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

12

Next steps

Discussions -> MLs
● linux-kernel, linux-perf-users
● linux-arm(-kernel), linux-omap

Parsing tools : pytimechart
 + timechart, other (new) tools

Contributors

● Trace code maintainers :
Steven Rostedt <rostedt@goodmis.org>
Frederic Weisbecker <fweisbec@gmail.com>
Ingo Molnar <mingo@redhat.com>

● New trace API & tools : Thomas Renninger <trenn () suse ! de>
● pytimechart : Pierre Tardy <pierre.tardy () intel ! com>

ELC 2011 – Tracing & Profiling for PM and Accelerators

System Engineering

Linux Development Center

Making Wireless

13

ELC 2011 – Tracing & Profiling for PM and Accelerators

Links
 Omapedia wiki
[1] PM debug & profiling

http://www.omappedia.org/wiki/Power_Management_Debug_and_Profiling
PM devices latency measurements

http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement

Mainline patches
PM trace API

http://marc.info/?l=linux-kernel&m=129173937301616&w=2
New API doc & suspend tracepoint

http://marc.info/?l=linux-kernel&m=129425340005149&w=2
Introduced clock and power_domain events classes

http://marc.info/?l=linux-kernel&m=128471217521623&w=2
OMAP tracepoints : clocks, power domains, default idle handler

http://marc.info/?l=linux-omap&m=129805267301984&w=2

pytimechart
http://gitorious.org/pytimechart#more

http://www.omappedia.org/wiki/Power_Management_Debug_and_Profiling
http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement
http://marc.info/?l=linux-kernel&m=129173937301616&w=2
http://marc.info/?l=linux-kernel&m=129425340005149&w=2
http://marc.info/?l=linux-kernel&m=128471217521623&w=2
http://marc.info/?l=linux-omap&m=129805267301984&w=2
http://gitorious.org/pytimechart#more

System Engineering

Linux Development Center

Making Wireless

14

ELC 2011 – Tracing & Profiling for PM and Accelerators

Backup slides

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14

