
January 26th, 2005 1

Flash Memory SIG
Discussion

Dongjun Shin
Samsung Electronics



January 26th, 2005 2

Contents
• Samsung’s experience with flash memory file system
• Technical Issues related to flash memory

– Handling various type of flash devices in a consistent way
– Bad block management
– ECC scheme
– Flash translation layer
– Wear leveling
– Garbage collection
– Boot loader
– And so on

• Conclusion
• Discussion



January 26th, 2005 3

Development of Linux RFS
• Development history 

– No-OS version of RFS was developed, and it was ported to Linux 
afterwards (named “Linux RFS”) due to the customer’s request

• Requirement of RFS (draft)
– FAT compatible
– Robust (against system failure)
– Optimized for NAND

• Exception handling for bad-block and ECC
• Portable across different NAND chip & target platform
• Should have performance as close as the spec of datasheet
• Bootable



January 26th, 2005 4

Issues during Migration
• Design-level decision

– What about JFFS2 or YAFFS? 
– Having its own S/W stack or use MTD? 
– How does MTD support NAND in its design?

• Integration with Linux file system layer
– Uncertainty factor: page cache, buffer cache, disk scheduler, faucet
– Is the full S/W stack controllable? (to meet the performance and

robustness requirement)
• Driver optimization & portability (when adopting to MTD)

– How do we support large-page/multi-planed NAND and OneNAND?
– How do we support new features of NAND? (ex. Cache read, cache write, 

copy-back)
– How to handle bad block using replacement scheme?



January 26th, 2005 5

Linux RFS Architecture

Small Block 
NAND

Large Block 
NAND

OneNAND MMC

Small Block 
NAND LLD

Large Block 
NAND LLD

OneNAND LLD

Universal Flash Driver

Flash Translation Layer

Flash Raw Block Dev. Flash Logical Block Dev. MMC Blk Dev.

RFS

CRAMFSext2

Kernel File System Interface

Applications

VFS (Virtual File System)

iso9660 … RFS to VFS Glue Layer

RFS Package

Linux Kernel Distribution

: added during porting



January 26th, 2005 6

Issues
• Handling various type of flash devices in a consistent way
• Bad block management
• ECC scheme
• Flash translation layer
• Wear leveling
• Garbage collection
• Partition table
• Boot loader
• Exploiting New flash memory technologies

– New operations: multi-plane, cache program, cache read, copy back
– New type devices: OneNAND, MLC

• Other considerations



January 26th, 2005 7

Handling various flash memories in 
a consistent way

• Supporting different type of flash memory, I/F, and 
configurations
– NAND: single/multi plane, small/large page, SLC/MLC, NAND 

with NOR I/F (OneNAND), mux/demux
– NOR: SLC/MLC
– Expanding memory capacity by cascading multiple devices

• Accessing flash memory devices
mtdblock Sector-oriented (partition, sector)

JFFS2 Byte-oriented (direct access to flash memory operations 
per partition)

Linux RFS Page-oriented (dev, block, page-group)



January 26th, 2005 8

Handling various flash memories in 
a consistent way (Cont’d)

• Multi-plane structure

• How about MLC?
• Why consistency matters?

– To make the porting work easy
– To make the best use of performance provided by underlying H/W



January 26th, 2005 9

Bad Block Management
• “Bad Block” definition

– On NAND flash memory, some bad blocks may exist at initial 
purchase time or at runtime (< 2% of entire blocks)

• Bad block management (BBM) scheme
– Replace bad block with good one (preferred!)

• Bad block management layer handles bad block both at initialization 
and at runtime with spare blocks

• Upper layer doesn’t care about the bad block 
• Lots of commercial S/W stack for flash memory use this approach

– Just skip bad block
• Example: JFFS2, YAFFS on MTD
• File system should consider the existence of bad block



January 26th, 2005 10

Bad Block Management (Cont’d)
• Issues with replacement scheme

– Need some reserved area for replacement (like spare tire!)
– Need map table to maintain replacement status
– Compatibility issue: what if boot loader (or gang programmer) and 

file system uses different scheme?
– Possible IP infringement

• Common questions related with BBM
– Which is the best place to handle bad block?
– Bad block management unit: partition or chip?
– How to use file system X on NAND? (including cramfs/romfs)
– How to boot from NAND?
– How to gang-program NAND?



January 26th, 2005 11

ECC Scheme
• Background

– On NAND, 1bit error is considered as normal and need to be corrected 
with ECC

– ECC code is stored on spare area of NAND
• How ECC is handled?

– S/W method: generate ECC code by computation
– H/W method: CPU or NAND chip has a special H/W logic to auto-

generate ECC
– Linux MTD support both methods

• Problem of ECC
– A flash file system may not work on some H/W platform that support 

H/W ECC due to different ECC layout on spare area (Ex. YAFFS on 
OneNAND)* 

– Compatibility issue: which spared bytes are used for ECC bytes?

*: recent version of MTD support ECC layout customization



January 26th, 2005 12

ECC Scheme (Cont’d)

(http://www.samsung.com/Products/Semiconductor/Flash/TechnicalInfo/spare_assignment_standard_20030221.pdf)

Spare area assignment standard by Samsung Electronics



January 26th, 2005 13

Wear-leveling
• Background

– Flash memories have upper limit on the number of erase count for
each block

• 100K for NAND
– Traditional file systems tend to concentrate updates to specific

region (ex. Metadata)
– Without wear-leveling, flash memory may wear-out in shorter time 

than expected
• Wear-leveling method

– Perfect method: keep erase count for each block
– Heuristic method: reuse blocks in a round-robin way (erase count 

follows normal distribution)
• Ex. JFFS2



January 26th, 2005 14

Flash Translation Layer (FTL)
• Role of FTL

– Translate sector read/write into flash read/program/ 
erase operations

– Common to NOR/NAND
• Linux MTD already has this feature

– mtdblock, mtdchar
– FTL, NFTL (by M-Sys)*: seems to handle wear-

leveling and bad-block replacement as well

*: usage is limited to some devices due to patent



January 26th, 2005 15

Garbage Collection
• Flash memory does not permit in-place editing

– A block should be erased before programming
– In some LFS-like implementations, new blocks are 

used during update as well as creation of pages
• Ex. File update, file system metadata update

• Garbage collections of several partially used 
blocks are required to make clean block => 
performance issues

• In Linux, JFFS2 and YAFFS do this operation



January 26th, 2005 16

Boot Loader
• Some CPU provides facility to boot from NAND using 

NFC
– How do we enable it? (n-stage booting)

• Ex. IPL => u-boot => kernel
– How to access NAND flash? (NAND driver)
– How to load/update kernel image? (BBM-related)

• Implementation issue
– Duplication of BBM and driver sources in boot loader and file 

system

• If you’re interested in booting from NAND, please ask me 
a demo! ☺



January 26th, 2005 17

Exploiting New Technologies
• Copy-back

– Using internal buffer to load and store a page on NAND cell (bypassing the 
‘transfer to host memory’ stage)

• Write while program (or cache program)
– Overlapping the program & write operation

• Read while load
– Using dual-buffer for overlapping load & read operation*

Host Mem

Host Mem

Internal
buffer NAND

Internal
buffer NAND

2

Host Mem Internal
buffer NAND

Internal
buffer

1 2

* specific to OneNAND

1

1

2



January 26th, 2005 18

Other Considerations
• Embedded vs. card-type

– Embedded: directly connected to CPU via memory bus
– Card-type: via dedicated bus or other bus (ex. USB)
– Common confusions

• Block device or USB mass storage? => depends on the type of 
connectivity

• What kind of S/W should be stacked? => depends on the 
existence of controller inside the memory (card) and on the 
type of file system

• Partition Table
– In the source code
– On the flash memory (runtime modifiable)



January 26th, 2005 19

Conclusion
• Linux MTD is a versatile framework for memory-type 

devices
– Lots of support for NOR have already been made and NAND 

support is catching up
• However, there are still some issues that need to be 

addressed and improved in MTD
– Bad block management by replacement
– Assumption about I/O unit size, ECC usage
– Optimization for new technologies

• It’s not just a matter of implementation, but also of 
standardization



January 26th, 2005 20

Discussion
• Should there be a FM WG?

– Anyway, the flash memory vendor will provide 
necessary S/W stack

• Scope of FM WG
– MTD only? 
– Incorporate all flash memory related issues?


	Flash Memory SIGDiscussion
	Contents
	Development of Linux RFS
	Issues during Migration
	Linux RFS Architecture
	Issues
	Handling various flash memories in a consistent way
	Handling various flash memories in a consistent way (Cont’d)
	Bad Block Management
	Bad Block Management (Cont’d)
	ECC Scheme
	ECC Scheme (Cont’d)
	Wear-leveling
	Flash Translation Layer (FTL)
	Garbage Collection
	Boot Loader
	Exploiting New Technologies
	Other Considerations
	Conclusion
	Discussion

