e

Flash Memory SIG
Discussion

Dongjun Shin
Samsung Electronics

January 26th, 2005

N

Contents

e Samsung’s experience with flash memory file system

» Technical Issues related to flash memory
— Handling various type of flash devices in a consistent way
— Bad block management
— ECC scheme
— Flash translation layer
— Wear leveling
— Garbage collection
— Boot loader
— Andsoon

e Conclusion
e Discussion

January 26th, 2005

A

Development of Linux RFS

e Development history
— No-0S version of RFS was developed, and it was ported to Linux
afterwards (named “Linux RFS”) due to the customer’s request
e Requirement of RFS (draft)
— FAT compatible
— Robust (against system failure)

— Optimized for NAND
» Exception handling for bad-block and ECC
» Portable across different NAND chip & target platform
 Should have performance as close as the spec of datasheet
« Bootable

January 26th, 2005

N

Issues during Migration

» Design-level decision
— What about JFFS2 or YAFFS?
— Having its own S/W stack or use MTD?
— How does MTD support NAND in its design?
* Integration with Linux file system layer
— Uncertainty factor: page cache, buffer cache, disk scheduler, faucet

— Is the full S/W stack controllable? (to meet the performance and
robustness requirement)

* Driver optimization & portability (when adopting to MTD)
— How do we support large-page/multi-planed NAND and OneNAND?

— How do we support new features of NAND? (ex. Cache read, cache write,
copy-back)

— How to handle bad block using replacement scheme?

January 26th, 2005 4

N

Linux RFS Architecture

Applications
|

Kernel File System Interface
|

VFES (Virtual File System)

: added during porting

RFS Package

[extz] [isosee0] ... [EEIGH RFS to VFS Glue Layer

Linux Kernel Distribution

Flash Raw Block Dev.

Flash Logical Block Dev.

MMC Blk Dev.

Flash Translation Layer
|

Universal Flash Driver

Small Block Large Block
NAND LLD NAND LLD

OneNAND LLD

Small Block Large Block
NAND NAND

OneNAND MMC
January 26th, 2005

e

|ssues

» Handling various type of flash devices in a consistent way
» Bad block management

« ECC scheme

» Flash translation layer

o Wear leveling

» Garbage collection

« Partition table

» Boot loader

» Exploiting New flash memory technologies
— New operations: multi-plane, cache program, cache read, copy back
— New type devices: OneNAND, MLC

e Other considerations

January 26th, 2005

b

{
Handling various flash memories In

a consistent way

o Supporting different type of flash memory, I/F, and
configurations

— NAND: single/multi plane, small/large page, SLC/MLC, NAND
with NOR I/F (OneNAND), mux/demux

— NOR: SLC/MLC

— Expanding memory capacity by cascading multiple devices
* Accessing flash memory devices

mtdblock Sector-oriented (partition, sector)

JFFS2 Byte-oriented (direct access to flash memory operations
per partition)

Linux RFS Page-oriented (dev, block, page-group)

January 26th, 2005

Handling various flash memories In
a consistent way (Cont’d)

e Multi-plane structure

Plane 0 Plane 1 Plane 2 Plane 3
{1024 Block) {1024 Block) {1024 Block) (1024 Block)
Block 0 Block 1 Block 2 Block 3
Page 0 Page 0 Page 0 Page 0
Page 1 Page 1 Page 1 Page 1
Page 30 Page 20 Page 30 Page 30
Page 31 Page 31 Page 31 Page 31

e How about MLC?

« Why consistency matters?
— To make the porting work easy
— To make the best use of performance provided by underlying H/W

January 26th, 2005

N

Bad Block Management

e “Bad Block” definition

— On NAND flash memory, some bad blocks may exist at initial
purchase time or at runtime (< 2% of entire blocks)

* Bad block management (BBM) scheme

— Replace bad block with good one (preferred!)

« Bad block management layer handles bad block both at initialization
and at runtime with spare blocks

» Upper layer doesn’t care about the bad block

» Lots of commercial S/W stack for flash memory use this approach
— Just skip bad block

o Example: JFFS2, YAFFS on MTD

 File system should consider the existence of bad block

January 26th, 2005

\Hr/"

Bad Block Management (Cont’d)

 |ssues with replacement scheme
— Need some reserved area for replacement (like spare tire!)
— Need map table to maintain replacement status

— Compatibility issue: what if boot loader (or gang programmer) and

file system uses different scheme?
— Possible IP infringement

e Common questions related with BBM
— Which is the best place to handle bad block?
— Bad block management unit: partition or chip?
— How to use file system X on NAND? (including cramfs/romfs)
— How to boot from NAND?
— How to gang-program NAND?

January 26th, 2005

10

ECC Scheme

« Background

— On NAND, 1bit error is considered as normal and need to be corrected
with ECC

— ECC code is stored on spare area of NAND
 How ECC is handled?
— S/W method: generate ECC code by computation

— H/W method: CPU or NAND chip has a special H/W logic to auto-
generate ECC

— Linux MTD support both methods

e Problem of ECC

— A flash file system may not work on some H/W platform that support
H/W ECC due to different ECC layout on spare area (Ex. YAFFS on
OneNAND)*

— Compatibility issue: which spared bytes are used for ECC bytes?

*: recent version of MTD support ECC layout customization
January 26th, 2005

11

ECC Scheme (Cont’d)

Spare area assignment standard by Samsung Electronics

pare area
16 B

RESER | RESER | RESER | RESER | RESER
LSNO [LSN1 | LSN2 | weo | wel ﬂEL‘Cﬂ ECC1 | ECC2 | skcen [s-peey | RESER | RESER | RESER | RESER | RESH

I* n mpy 3R 4ih SR [i TR LR] i 10 1R)] 13V R 14" B ISl 16 R

> L3N : Logical Sector Number

=WC : Status flag against sudden power failure during writa
= ECCO0,ECC1,ECCZ : ECC code for Main area data

=5 ECCO0,5 ECCH : ECC code for LSN data

= Bl : Bad block Information

(http://www.samsung.com/Products/Semiconductor/Flash/Technicallnfo/spare_assignment_standard_20030221.pdf)

January 26th, 2005 12

A

Wear-leveling

e Background
— Flash memories have upper limit on the number of erase count for
each block
* 100K for NAND

— Traditional file systems tend to concentrate updates to specific
region (ex. Metadata)

— Without wear-leveling, flash memory may wear-out in shorter time
than expected
o Wear-leveling method
— Perfect method: keep erase count for each block

— Heuristic method: reuse blocks in a round-robin way (erase count
follows normal distribution)

e EX.JFFS2

January 26th, 2005 13

.

Flash Translation Layer (FTL)

e Roleof FTL

— Translate sector read/write into flash read/program/
erase operations

— Common to NOR/NAND

e Linux MTD already has this feature
— mtdblock, mtdchar

— FTL, NFTL (by M-Sys)*: seems to handle wear-
leveling and bad-block replacement as well

*: usage is limited to some devices due to patent
January 26th, 2005 14

\Hr"

Garbage Collection

« Flash memory does not permit in-place editing
— A block should be erased before programming

— In some LFS-like implementations, new blocks are
used during update as well as creation of pages
» EX. File update, file system metadata update
o (Garbage collections of several partially used
blocks are required to make clean block =>
performance Issues

* In Linux, JFFS2 and YAFFS do this operation

January 26th, 2005 15

N

Boot Loader

o Some CPU provides facility to boot from NAND using
NFC

— How do we enable it? (n-stage booting)
e EX. IPL => u-boot => kernel

— How to access NAND flash? (NAND driver)
— How to load/update kernel image? (BBM-related)

e Implementation issue

— Duplication of BBM and driver sources in boot loader and file
system

 [f you’re interested in booting from NAND, please ask me
a demo! ©

January 26th, 2005 16

N

Exploiting New Technologies

o Copy-back

— Using internal buffer to load and store a page on NAND cell (bypassing the
‘transfer to host memory’ stage)

——

Host Mem | Internal | > NAND

buffer | (o) L ——

» Write while program (or cache program)
— Overlapping the program & write operation

@ [Internal @ |
> !

buffer

Host Mem

* Read while load
— Using dual-buffer for overlapplng load & read operation*

——

Host Mem@ buffer ‘_QD— NAND

Internal

A N N * specific to OneNAND

January 26th, 2005 17

Other Considerations

 Embedded vs. card-type
— Embedded: directly connected to CPU via memory bus

— Card-type: via dedicated bus or other bus (ex. USB)

— Common confusions
» Block device or USB mass storage? => depends on the type of
connectivity

* What kind of S/W should be stacked? => depends on the
existence of controller inside the memory (card) and on the

type of file system

o Partition Table
— In the source code
— On the flash memory (runtime modifiable)

January 26th, 2005 18

I
Conclusion
e Linux MTD is a versatile framework for memory-type
devices

— Lots of support for NOR have already been made and NAND
support is catching up

* However, there are still some issues that need to be
addressed and improved in MTD
— Bad block management by replacement
— Assumption about I/O unit size, ECC usage
— Optimization for new technologies

 [t’s not just a matter of implementation, but also of
standardization

January 26th, 2005

19

N

Discussion

e Should there be a FM WG?

— Anyway, the flash memory vendor will provide
necessary S/W stack

e Scope of FM WG
— MTD only?
— Incorporate all flash memory related issues?

January 26th, 2005 20

	Flash Memory SIGDiscussion
	Contents
	Development of Linux RFS
	Issues during Migration
	Linux RFS Architecture
	Issues
	Handling various flash memories in a consistent way
	Handling various flash memories in a consistent way (Cont’d)
	Bad Block Management
	Bad Block Management (Cont’d)
	ECC Scheme
	ECC Scheme (Cont’d)
	Wear-leveling
	Flash Translation Layer (FTL)
	Garbage Collection
	Boot Loader
	Exploiting New Technologies
	Other Considerations
	Conclusion
	Discussion

