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O Structure of V4L2 framework

V4L2 device

V4L2 sub-device
Video device nodes
V4L2 control objects

© 00O

Q Controlling V4L2 devices

QO Why are controls needed?

Q Control methods provided by V4L2

Q Leveraging controls from User space application
QO Notes on implementing controls

O Sample capture device with controls
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Structure of V4L2 framework R R nhdied Linu

QO Typical video capture involves multiple devices, which can include a bridge device and
one or more sub-devices

Q e.g. Streaming with remote cameras can have multiple sensors, Serializer and Deserializers
combination to aggregate camera streams and camera interface controllers

Camera sensor

<:> Serializer |<:::> Deserializer |<

Camera sensor

>l Host Processor

Camera sensor

)| serializer |<:> Deserializer |

Camera sensor
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Structure of V412 framework (Cont’d.) @ Bhge Lioux

V4L2 framework provides kernel data structures for drivers to describe the
bridge device and attached sub-devices

Q struct v4I2_device: Is the top level data structure acting as root node of streaming device and
is responsible for managing the child devices

Q struct v4I2_subdev: The sub-devices attached to the bridge device are represented with
struct v412_subdev. These can be camera interface controller in host processor or the camera
sensors providing the image stream.

Q struct video_device: Abstracts the capture interface and exposes the device nodes under
“/dev/” directory

struct v412_ctrl: Describes control properties and tracks control value

(]

Q struct v4i2_ctrl_handler: Keeps track of all controls within the device

Foundry Design Services (FDS) SW 3



VAL2 framework - Structure of Driver R eded L inux

QA Block Diagram and Associated V4L2 objects

struct v4l2_device {

struct device *dev;

struct media_device *mdev;

struct list_head subdevs;
e — spinlock_t lock;
char name[Vi4L2_DEVICE_NAME_SIZE];
structv4l2_ctrl_handler *ctrl_handler;

<:> Serializer <::> Deserializer k
structv4l2_subdev {
Camera sensor III bool owner_v4[2_dev;
L struct v4l2_device *vdI2_dev;
\‘, - :> Host structv4l2_ctrl_handler *ctrl_handler;

Processor char name[V4L2_SUBDEV_NAME_SIZE],
structvideo_device *devnode;

® struct device *dev;
° <:> Serializer <::> Deserializer i
@ | :

struct video_device

{

. e conststruct v4l2_file_operations *fops;
u32 device_caps;

struct device dev;

$# 1s /dev/video* \
/dev/video0 /dev/videoll /dev/video4 /dev/video7 i struct cdev *cdev;

/dev/videol /dev/video2 /dev/video5 /dev/video8 | struct v4l2_device *vdl2_dev;
/dev/videol0 /dev/video3 /dev/video6é /dev/video9 | structval2 ctrl handler *ctrl handler;
# 1ls /dev/v4l-subdev* : o -

/dev/vd4l-subdev0 /dev/vd4l-subdevll /dev/vdl-subdevd /dev/v4l-subdev? char name([32];
\ /dev/v4l-subdevl /dev/v4l-subdev2 /dev/v4l-subdev5S /dev/v4l-subdev8 } .
“\ . /dev/v4l-subdevl0) /dev/v4l-subdev3 /dev/v4l-subdevé /dev/v4l-subdev® i k
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Controlling V4L2 devices E e Lo

Q Controls are needed Q Capturing and streaming the images
O Due to diverse nature of capture can implement all or some of the
devices, most of the devices expose required controls

controls that are configurable by user

Q Controls provided can be specific to the
device which are vendor specific

QO Device control needs can be application
specific as well
Q V4L2 framework provides methods to
set the controls by user

= Standard controls

= Extended controls

= Custom controls

= Private controls
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Controlling V4L2 devices (Cont’d.) E e Lo

Q Controls are accessed using control ID value

QO V4L2 framework arranges the controls into classes which serve as base for
control IDs

include/uapi/linux/v4i2-controls.h

#define V4L2_CTRL_CLASS USER 0x00980000 /* Old-style 'user’ controls */
#define V4L2_CTRL_CLASS MPEG 0x00990000 /* MPEG-compression controls */
#define V4L2_CTRL_CLASS CAMERA 0x009a0000 /* Camera class controls */
#define V4L2_CTRL_CLASS FM_TX 0x009b0000 /* FM Modulator controls */
#define V4L2_CTRL_CLASS FLASH 0x009c0000 /* Camera flash controls */
#define V4L2_CTRL_CLASS _JPEG 0x009d0000 /* JPEG-compression controls */

#define V4L2_CTRL_CLASS IMAGE_SOURCE 0x009e0000 /* Image source controls */
#define V4L2_CTRL_CLASS IMAGE_PROC  0x009f0000 /*Image processing controls */
#define V4L2_CTRL_CLASS DV 0x00a00000 /* Digital Video controls */

#define V4L2_CTRL_CLASS FM_RX 0x00a10000 /* FM Receiver controls */

#define V4L2_CTRL_CLASS RF_TUNER 0x00a20000 /* RF tuner controls */

#define V4L2_CTRL_CLASS DETECT 0x00a30000 /* Detection controls */
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Controlling V4L2 devices — Standard controls &3 &

QO V4L2 framework provides standard controls with predefined control IDs

/" User-class control IDs */

#define V4L2_CID_BASE (V4L2_CTRL_CLASS_USER | 0x900)
#define V4L2_CID_USER_BASE V4L2_CID_BASE

#define V4L2_CID_USER_CLASS (V4L2_CTRL_CLASS_USER| 1)
#define V4L2_CID_BRIGHTNESS (V4L2_CID_BASE+Q)

#define V4L2_CID_CONTRAST (V4L2_CID_BASE+1)

#define V4L2_CID_SATURATION (V4L2_CID_BASE+2)

#define V4L2_CID_HUE (V4L2_CID_BASE+3)

#define V4L2_CID_AUDIO_VOLUME (V4L2_CID_BASE+5)

#define V4L2_CID_AUDIO_BALANCE (V4L2_CID_BASE+6)

#define V4L2_CID_AUDIO_BASS (V4L2_CID_BASE+T)

#define V4L2_CID_AUDIO_TREBLE (V4L2_CID_BASE+8)

#define V4L2_CID_AUDIO_MUTE (V4L2_CID_BASE+9)

#define V4L2_CID_AUDIO_LOUDNESS (V4L2_CID_BASE+10)

#define V4L2_CID_BLACK_LEVEL (V4L2_CID_BASE+11) /* Deprecated */

#define V4L2_CID_AUTO_WHITE_BALANCE  (V4L2_CID_BASE+12)
#define V4L2_CID_DO_WHITE_BALANCE (V4L2_CID_BASE+13)

#define V4L2_CID_RED_BALANCE (V4L2_CID_BASE+14)

#define V4L2_CID_BLUE_BALANCE (V4L2_CID_BASE+15)

#define V4L2_CID_GAMMA (V4L2_CID_BASE+16)
#define V4L2_CID_WHITENESS (V4L2_CID_GAMMA) /* Deprecated */

#define V4L2_CID_EXPOSURE (V4L2_CID_BASE+17)

#define V4L2_CID_AUTOGAIN (V4L2_CID_BASE+18)

#define V4L2_CID_GAIN (V4L2_CID_BASE+19)
#define V4L2_CID_HFLIP (V4L2_CID_BASE+20)
#define V4L2_CID_VFLIP (V4L2_CID_BASE+21)
#define V4L2_CID_COLORFX_CBCR (V4L2_CID_BASE+42)

MlastCID + 1%
#define V4L2_CID_LASTP1 (V4L2_CID_BASE+43)
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€Embedded Linux

Controlling V412 devices — Extended controls Conference

O Extended controls for Camera Class
include/uapi/linux/v4i2-controls.h

#define VAL2_CID_EXPOSURE_AUTO (VAL2 CID CAMERA_CLASS BASE+1)
enum v4l2_exposure_auto_type {

V4L2 EXPOSURE AUTO=0,

VAL2 EXPOSURE MANUAL =1,

VAL2 EXPOSURE _SHUTTER_PRIORITY =2,

VAL2 EXPOSURE APERTURE_PRIORITY=3
};
#define V4L2_CID _EXPOSURE_ABSOLUTE (V4L2 CID_CAMERA_CLASS BASE+2)
#define V4L2_CID _EXPOSURE_AUTO_PRIORITY (V4L2 _CID_CAMERA_CLASS BASE+3)

#define VAL2_CID_PAN RELATIVE
#define VAL2_CID_TILT RELATIVE
#define VAL2_CID_PAN_RESET
#define VAL2_CID TILT RESET

#define VAL2_CID_PAN ABSOLUTE
#define VAL2_CID_TILT ABSOLUTE

#define VAL2_CID_FOCUS_ABSOLUTE
#define VAL2_CID_FOCUS_RELATIVE
#define VAL2_CID_FOCUS_AUTO

#define VAL2 CID_PAN_SPEED
#define VAL2_CID TILT SPEED

(VAL2 CID CAMERA_CLASS BASE+4)
(VAL2 CID CAMERA_CLASS BASE+5)

(VAL2 CID CAMERA_CLASS BASE+6)
(VAL2 CID CAMERA_CLASS BASE+7)

(VAL2 CID CAMERA_CLASS BASE+8)
(VAL2 CID CAMERA_CLASS BASE+9)

(VAL2 CID CAMERA_CLASS BASE+10)
(VAL2 CID CAMERA_CLASS BASE+11)

(VAL2 CID CAMERA_CLASS BASE+12)

(VAL2 CID CAMERA_CLASS BASE+32)
(VAL2 CID CAMERA_CLASS BASE+33)
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Controlling V4L2 devices — Custom controls  £3 &

O Often devices provide controls which are specific to that device and not available
in standard or extended controls
Q Sensor specific parameters
O Test pattern generation
Q Set number of data lanes to stream (e.g. for MIPI-CSI2 interface)
Q Set per stream controls
= Error count threshold
= DMA controls

Q Any other controls which are driver specific (Implemented in driver using
V4L2 CID_PRIVATE BASE or higher values)
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Controlling V4L2 devices — Inheriting controls§3emmese

Q Controls from one handler can be added Q Useful when controls implemented by

to another two devices are same, thus avoids
include/media/v4i2-ctris.h rei m p | eme ntatio N
int v412_ctrl_add_handler(struct v4I2_ctrl_handler *hdl, Q e.g. controls like gain, brightness,
struct v412_ctrl_handler *add, . .
V412 ctrl filter filter, exposure which are mplemented Igy
bool from_other_dev); sensor can be reused in bridge device
node

Q filter: function to select the controls to
be added

= controls can also be filtered based on class
to which they belong using
V4L2 CTRL_ID2WHICH() helper

Q from_other_dev: controls are defined in
another device
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Controlling V4L2 devices — Private controls  §3&nsedsed i

d Controls may not be always needed by bridge device node

Q e.g. advanced debug feature particular to sensor is not needed at video device
node

QA struct v412_ctrl provides bit mapped variable is_private to inform the

framework exclude the control to be added to another handler

Q Setting is_private prevents the control being added from sub-device to root
device during v412 _device_register_subdev() call
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Controlling V412 devices — Control flags R

a Following control flags are available for V4L2 devices

include/uapi/linux/videodev2.h

/* Control flags */

#define V412 CTRL _FLAG DISABLED 0x0001
#define VAL2_CTRL_FLAG_GRABBED 0x0002
#define VAL2_CTRL_FLAG_READ ONLY  0x0004

#define V4L2_CTRL_FLAG_UPDATE 0x0008
#define V4L2 CTRL_FLAG_INACTIVE  0x0010
#define V4L2_CTRL_FLAG_SLIDER 0x0020

#define V4L2_CTRL_FLAG_WRITE_ONLY  0x0040
#define V4L2_CTRL_FLAG_VOLATILE ~ 0x0080
#define V4L2_CTRL_FLAG_HAS_PAYLOAD  0x0100
#define V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200
#define V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400
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Controlling VV4L2 devices — VVAL2 Control Notification @3 ensedded unux

Q Used to notify the change in control’s value.

Q Notification will be helpful in case of inherited controls.

Q e.g. sometimes the platform or bridge drivers need to be notified when
control from sub-device driver changes.

a Only one notify function should be used per control handler.
3 You can set a notify callback by calling below function.

void v412_ctrl_notify(struct v4l2_ctrl *ctrl, v4l2_ctrl_notify fnc notify,
void *priv);

Foundry Design Services (FDS) SW 13




€Embedded Linux

Integration with Linux media controller framework @@nfem

O Media device consists of media pipeline involving sub-devices (media entities) with links
between pads (source, sink)

Q struct media_device
O Media Entity
O Describes basic hardware block

Q Off the chip devices such as sensors or, On chip IPs such as ISP or any logical device participating in strea
ming pipeline such as the DMA engine

Q struct media_entity
QO Media Pad

O Connection endpoint through which entities transfer data
QO Source and Sink pads

Q struct media_pad
O Media Link

QO Connection between two pads, either on same entity or between different entities

Q struct media_link
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Embedded Linux

Integration with Linux media controller framework (Cont’d.) @ Confelience

O Diagrammatic representation

Media device Media entity

Medi:; pad Medié link
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€Embedded Linux

Integration with Linux media controller framework (Cont’d.) @ Confelience

O VA4L2 device abstraction

QO Uses struct media_device to abstract struct v4/2_device objects
include/media/v4i2-device.h
struct v412_device {

struct device *dev;
struct media_device *mdev;

hs

O VA4L2 sub-devices and video devices are observed as media entities

include/media/v412-subdev.h include/media/v412-dev.h
struct v412_subdev { struct video_device
#if defined(CONFIG_MEDIA_CONTROLLER) {

struct media_entity entity; #if defined(CONFIG_MEDIA_CONTROLLER)
#endif struct media_entity entity;

struct media_intf_devnode *intf_devnode;
b struct media_pipeline pipe;

#endif

i
QO type field of struct media_entity is set to MEDIA_ENTITY _TYPE V4L2 SUBDEV or MEDIA _ENTITY _TYPE VIDEO DEVICE
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€Embedded Linux

Integration with Linux media controller framework (Cont’d.) @ B

Q VA4L2 driver initializes the media device within struct v4l12_device using
media_device_init()

struct v412_device {
struct device *dev;
struct media_device *mdev;

k
O Each entity driver initializes its entities and pad arrays
O v4I2_subdev->entity
Q video_device->entity
QO media_entity _pads_init()
O Controls set by V4L2 driver are applicable for each media entity
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Leveraging controls from User space application £33 &nsdded tinux

Q VA4L2 framework provides IOCTLs to
QO Enumerate the controls provided by driver
» VIDIOC_QUERYCTRL
= VIDIOC _QUERY _EXT_CTRL
O Get control value
« VIDIOC_G_CTRL
« VIDIOC_G_EXT_CTRLS
O Set control value
« VIDIOC_S_CTRL
« VIDIOC_S_EXT _CTRLS
» VIDIOC_TRY_EXT_CTRLS

Q Drivers must implement these IOCTLs when device has one or more controls

Q Custom control IDs must be exposed to applications from header files under
“include/uapi/linux/”
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Leveraging controls from User space application (Cont’d.) @ Eppedal Linux

d Enumerate all the User controls

for (queryctrl.id = V4L2_CID_BASE;
queryctrl.id < V4L2_CID_LASTP1;
queryctrl.id++) {
if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)){
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
continue;

d Enumerate the controls provided by driver

for (queryctrl.id = VV4L2_CID_PRIVATE_BASE;;
queryctrl.id++) {
if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)){
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
continue;

printf("Control %s\n", queryctrl.name);
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Conference

Leveraging controls from User space application - Changing controls @ Embsaged Lintix

O Query the desired user control
Q Use VIDIOC G _CTRL and VIDIOC S CTRL to get or set the control value

struct v412_queryctrl queryctrl;
struct v412_control control;

memset{&queryctrl, 0, sizeof{queryctrl));
queryctrl.id = V4L2_CID_CUSTOM_CONTROL 1;

if (-1 == ioctl{sd_fd, VIDIOC _QUERYCTRL, &queryctrl)) {
perror(" V4L2_CID_CUSTOM_CONTROL_1 notsupported!\n");
exit(EXIT_FAILURE);

}

memset(&control, 0, sizeoffcontrol));
control.id = V4L2_CID_CUSTOM_CONTROL 1;

if (0 == joctl(fd, VIDIOC _G_CTRL, &control)) {
/¥ set the desired value */
control.value = x;

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)
&& errno I= ERANGE) {
perror("VIDIOC S _CTRL");
exit(EXIT_FAILURE);
}

}else if (errno I= EINVAL) {
perror("VIDIOC_G_CTRL");
exit(EXIT_FAILURE);

}
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Notes on Implementing Controls E e Lo

Q Driver implementation of controls need to be documented

QO “Documentation/userspace-api/media/drivers/”
QO Useful for custom controls

Q v4/2 subdev controls can be overwritten by v4/2_dev during sub-device
registration

QO Decide which controls need protection
Q Set is_private flag for sub-device controls which need protection
QO Adding controls to v4/2_subdev after the device is registered will not have any effect
= Add the required controls for the sub-device prior to v4/2_device_register _subdev()
Q Set the controls to default value

Q Callv4i2_ctrl_handler_setup() for the control handler and initialize any hardware
control values

Q Helps avoiding setting the hardware device to default values from user application
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Sample capture device with controls PR nih et Linux

Q 2 Camera sensors connected to Serializer

O Image streams aggregated by Serializer, Deserializer and received by Host at MIPI CSI2 Rx port
Q Streaming RAW12 Bayer images

I}

RAW12 Capture0 RAW12 Capture1
Jdev/videoO Jdev/video1
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How to add controls? E e Lo

Q Driver needs to fill struct v412_ctrl_config and struct v412_ctrl_ops
Q After initializing above structures, now controls are ready to get initialized

struct v412_ctrl *v4i2_ctrl_new_custom(struct v412_ctrl_handler *hd|,
const struct v412_ctrl_config *cfgq,
void *priv);
struct v412_ctrl *v4i2_ctrl_new_std(struct v412_ctrl_handler *hdl,
const struct v412_ctrl_ops *ops,
u32id, s64 min, s64 max, u64 step,
564 def);

struct v412_ctrl *v4i2_ctrl_new_std_menu(struct v4i2_ctrl_handler *hdI,

const struct v412_ctrl_ops *ops,
u32id, u8 max, u64 mask, u8 def);

Q Driver should use these functions to register for custom or standard controls

QO Depending on the type of the control registration function will change
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Structure v4l2_ctrl_config 3

€Embedded Linux
Conference

Q Exploring v4I2_ctrl _config structure

include/media/v4i2-ctris.h

struct v412_ctrl_config {
const struct v4i2_ctrl_ops *ops;
u32id;
const char *name;
enum v4l2_ctrl_type type;
s64 min;
s64 max;
ué4 step,
s64 def;
unsigned intis_private:1;

Foundry Design Services (FDS) SW

ops — Callback used to handle the controls.

id — Control id.

name — Driver will set the name.

min — Minimum value the control allows.

max — Maximum value the control allows.
def—v412_ctrl_handler_setup function will set control to
default value.

is_private — set this to prevent control used by other control
handler.

Additional fields which can be used depending on
control type implementation.
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Structure v4l2_ctrl_ops €3 Eomenaeg inex

include/media/v4[2-ctrls.h

struct v412_ctrl_ops {
int (*g_volatile_ctrl)(struct v412_ctrl *ctrl);
int (*try_ctrl)(struct v412_ctrl *ctrl);
int (*s_ctrl)(struct v412_ctrl *ctrl);

k-

Q g_volatile_ctrl: Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that return the current signal strength which
changes continuously. If not set, then the currently cached value will be returned

Q try_ctrl: Test whether control’s value is valid. Only relevant when the usual min/max/step
checks are not sufficient

Q s_ctrl: Actually set the new control value .s_ctrlis compulsory. The ctrl->handler-> lock is held
when these ops are called, so no one else can access controls owned by that handler
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val2_ctrl_ops— An Example fienihduad ou

A Driver should initialize v412_ctrl_ops and define s_ctrl callback to implement different
control functionality

sample_capture_ip.c

int capture_ip_s_ctri(struct v412_ctrl *ctrl)
{
switch (ctrl->id) {
case V4L2 _CID_USER_NO_OF_LANE:
/*handles HW or SW related functionality */

break;
default:
break;

}

returnO;

}

static const struct v412_ctrl_ops capture_ctrl_ops = {
.5_ctrl = capture_ip_s_ctrl,

I
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Structure and example for adding controls  §3 & inex

O Example for setting number of lanes used to receive the frames

O min and max are minimum and maximum number of lanes used to receive the
frames

Q step is used to set intermediate value between min and max no of lanes

sample_capture_ip.c

static const struct v412_ctrl_config capture_ip_set_nb_lane={
.ops = &capture_ctrl_ops,
id =V4L2_CID_USER_NO_OF_LANE,
.type =V4L2 _CTRL_TYPE_INTEGER,
.name = "no of lanes",

.min =1,
step =1,
.max =4,
def =1,

hs

static int capture_probe(struct platform_device *pdev)

{

v4i2_ctrl_new_custom(&dev->ctrl_handler, &capture_ip_set_nb_lane, NULL);

}
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Steps to implement control handler.in driver §3&mess.

Q Add the v4I2 ctrl_handler structure to the top level structure or driver’s private
structure

Q For V4L2 driver add at the same level where V4L2 device is present

Q Initialize the control handler

O Add all the necessary controls to your device as discussed in previous slides
QO Optionally force initialization of all the controls

Q Free the control handler when device is leaving or removed
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Adding Control Handler — An Example PR nih et Linux

d Implementation of steps discussed in previous slide

sample_capture_ip.c
struct capture_dev {
;ilruct v4I2_device v412_dev;
;ilruct v4I2_ctrl_handlerctrl_handler;
4
struct capture_dev *cap_dev

static int capture_probe(struct platform_device *pdev)

{

v4i2_ctrl_handler_init(&cap_dev->ctrl_handler, nr_of controls);
cap_dev->v4l2_dev.ctrl_handler= &cap_dev->ctrl_handler;
v4i2_ctrl_new_custom(&cap_dev->ctrl_handler, &capture_ip_set_nb_lane, NULL);
/* Add control like above as discussed in how to add control section */

/* this step complety optional */
v4i2_ctrl_handler_setup(&dev->ctrl_handler);
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Conference

How to Implement Control Notification?. = §3&nseded

static void sensor_ctrl_notify(struct v412_ctrl *ctrl, void *priv)

{
switch(ctrl->id)
{
case V4L2 CID_USER_NO_OF LANE:
/* Sync the data structures */
break;
}
}
static int sensor_probe(struct platform_device *pdev)
{
/* After adding control to the control handler */
v412_ctrl_notify(v4l2_ctrl find(hdl, V4L2 _CID USER NO_OF LANE,
sensor_ctrl_notify, priv);
}

Foundry Design Services (FDS) SW 30




Conference

VA4lL.2-ctl utils @ Embedded Linux

Q v4l2-ctl --list-device
Q List all the v4l2-device with video device number and corresponding name
# vdl2-ctl --list-device

csis (platform:csise-000):
/dev/videosd

csis (platform:csise-8081):
Jdev/videnl

Foundry Design Services (FDS) SW
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V4L2-ctl utils (Cont’d.) 3 Emerence ™

Q v412-ctl --all --device /dev/video{n}

Q Gives information about driver name, card type, bus info, driver version
and device capabilities (video capture and streaming)

O Default width, height and pixel format

# walz-ctl --all --dewvice ysdew/videoo
Driver Info (not using Llibw4al2):

Driver name H CcCs1s

Card type : csis

Bus info : platform:csis0-080
Driver wversion: 5.4.161
Capabilities : ExS84200001

Video Capture

Streaming

Extended Pix Format

Dewvice Capabilities
Dewvice Caps : Dxed4Z2EEE01

Video Capture

Streaming

Extended Pix Format

Priority: 2

video 1nput : @ (Camera @

- ok)

Format Video Capture:
wWidthys/He ight : llse/720
Pixel Format : 'BAlZ2"
Field : None
Bytes per Line I : |
Size Image E -
Colorspace 1 Raw

Transter Function : Unknown (BxB88B8BS80)
YCbCr/HSV Encoding: Unknown (Bx20BES8000)
Quantization : Unkrnown (oxeeeeffff)
Flags H

User Controls

brightness ox00980988 ( i1nt) D min=-208 max=127 step=1 default=0 walue=8 flags=slider
contrast OxEOE988981 ( int) : min=-127 max=127 step=1 default=0 walue=6 flags=slider
saturation ExEEIEE902Z (int) : min=-127 max=127 step=1 default=0 walue=8 flags=slider
sharpness @xee93e91b (int) : min=-127 max=127 step=1 default=0 walue=8 flags=slider
csis_no_of_lanes expe98l9ce ( int) : min=1 max=4 step=1 default=1 walue=3
csis_set_dec_phy mode 0x009819c3 (bool) : default=0 walue=0 flags=update

Foundry Design Services (FDS) SW
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V4L2-ctl utils (Cont’d.)

€Embedded Linux
Conference

Q v412-ctl --list-ctrls --device /dev/video{n}

Q List all the control owned by the device.

Q Gives information about control name, control id, type of control, min,
max, default, current value and flag.

# wdl2z-ctl --list-ctrls --device sdev/videoB

User Controls

brightness

contrast

saturation

sharpness

csis_no_of lanes
csis_set_dc_phy_mode

Foundry Design Services (FDS) SW

OxBbE930%00
OxBbE930%01
Ox00980902
0x0098091b
BxBE9819cH
BxBBE9819c3

(1nt)
(int)
(int)
{1int)
(1nt)
(bool)
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: min=-208 max=127 step=1 default=0
: min=-127 max=127 step=1 default=0
: min=-127 max=127 step=1 default=0
: min=-127 max=127 step=1 default=06
: min=1 max=4 step=1 default=1 value=3
: default=0 value=0 flags=update

value=0 flags=slider
value=0 flags=slider
value=0 flags=slider
value=0 flags=slider



V4L2-ctl utils (Cont’d.) B ke i

Conference

Q v4l2-ctl --device /dev/video{n} --get-ctrl={control_name}
Q Used to get current value of the control for given device.

# vdl2-ctl --device fdev/video® --get-ctrl=csis _no_of lanes
csis_no_of lanes: 1

Q v4l2-ctl --device /dev/video{n} --set-ctrl={control_name} ={value}
Q Used to set the control to new value for given device.

# vdl2-ctl --device sdev/videof --set-ctrl=csis_no_of_lanes=2
# vdl2-ctl --device fdewv/video® --get-ctrl=csis no_of lanes
csis_no_of lanes: 2
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Conference

V4L2-ctl utils (Cont’d.) £ 3 b e Linue

Q v4l2-ctl --d /dev/video{n} --log-status

Q Gives the current value of all the controls owned by the device
# v4l2-ctl -d sdev/videod --log-status

Status Log:

[ 1176.975940] 001: csis0-000: START STATUS

[ 1176.975948] 801: w4lZ2-ctrls: csis@-088: CSIS no of lanes: 2

[ 1176.975957] 8681: wvAlZ-ctrls: csis@-088: CSIS set DC-PHY mode: false
[ 1176.975960] GB1: csis0-000: END STATUS
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