THE ——

L JLINUX cded L

FOUNDATION — - . & ==t

Azl &3 cppscecine

O Structure of V4L2 framework

V4L2 device

V4L2 sub-device
Video device nodes
V4L2 control objects

© 00O

Q Controlling V4L2 devices

QO Why are controls needed?

Q Control methods provided by V4L2

Q Leveraging controls from User space application
QO Notes on implementing controls

O Sample capture device with controls

Foundry Design Services (FDS) SW 1

Structure of V4L2 framework R R nhdied Linu

QO Typical video capture involves multiple devices, which can include a bridge device and
one or more sub-devices

Q e.g. Streaming with remote cameras can have multiple sensors, Serializer and Deserializers
combination to aggregate camera streams and camera interface controllers

Camera sensor

<:> Serializer |<:::> Deserializer |<

Camera sensor

>l Host Processor

Camera sensor

)| serializer |<:> Deserializer |

Camera sensor

Foundry Design Services (FDS) SW 2

Structure of V412 framework (Cont’d.) @ Bhge Lioux

V4L2 framework provides kernel data structures for drivers to describe the
bridge device and attached sub-devices

Q struct v4I2_device: Is the top level data structure acting as root node of streaming device and
is responsible for managing the child devices

Q struct v4I2_subdev: The sub-devices attached to the bridge device are represented with
struct v412_subdev. These can be camera interface controller in host processor or the camera
sensors providing the image stream.

Q struct video_device: Abstracts the capture interface and exposes the device nodes under
“/dev/” directory

struct v412_ctrl: Describes control properties and tracks control value

(]

Q struct v4i2_ctrl_handler: Keeps track of all controls within the device

Foundry Design Services (FDS) SW 3

VAL2 framework - Structure of Driver R eded L inux

QA Block Diagram and Associated V4L2 objects

struct v4l2_device {

struct device *dev;

struct media_device *mdev;

struct list_head subdevs;
e — spinlock_t lock;
char name[Vi4L2_DEVICE_NAME_SIZE];
structv4l2_ctrl_handler *ctrl_handler;

<:> Serializer <::> Deserializer k
structv4l2_subdev {
Camera sensor III bool owner_v4[2_dev;
L struct v4l2_device *vdI2_dev;
\‘, - :> Host structv4l2_ctrl_handler *ctrl_handler;

Processor char name[V4L2_SUBDEV_NAME_SIZE],
structvideo_device *devnode;

® struct device *dev;
° <:> Serializer <::> Deserializer i
@ | :

struct video_device

{

. e conststruct v4l2_file_operations *fops;
u32 device_caps;

struct device dev;

$# 1s /dev/video* \
/dev/video0 /dev/videoll /dev/video4 /dev/video7 i struct cdev *cdev;

/dev/videol /dev/video2 /dev/video5 /dev/video8 | struct v4l2_device *vdl2_dev;
/dev/videol0 /dev/video3 /dev/video6é /dev/video9 | structval2 ctrl handler *ctrl handler;
1ls /dev/v4l-subdev* : o -

/dev/vd4l-subdev0 /dev/vd4l-subdevll /dev/vdl-subdevd /dev/v4l-subdev? char name([32];
\ /dev/v4l-subdevl /dev/v4l-subdev2 /dev/v4l-subdev5S /dev/v4l-subdev8 } .
“\ . /dev/v4l-subdevl0) /dev/v4l-subdev3 /dev/v4l-subdevé /dev/v4l-subdev® i k

Foundry Design Services (FDS) SW 4

Controlling V4L2 devices E e Lo

Q Controls are needed Q Capturing and streaming the images
O Due to diverse nature of capture can implement all or some of the
devices, most of the devices expose required controls

controls that are configurable by user

Q Controls provided can be specific to the
device which are vendor specific

QO Device control needs can be application
specific as well
Q V4L2 framework provides methods to
set the controls by user

= Standard controls

= Extended controls

= Custom controls

= Private controls

Foundry Design Services (FDS) SW 5

Controlling V4L2 devices (Cont’d.) E e Lo

Q Controls are accessed using control ID value

QO V4L2 framework arranges the controls into classes which serve as base for
control IDs

include/uapi/linux/v4i2-controls.h

#define V4L2_CTRL_CLASS USER 0x00980000 /* Old-style 'user’ controls */
#define V4L2_CTRL_CLASS MPEG 0x00990000 /* MPEG-compression controls */
#define V4L2_CTRL_CLASS CAMERA 0x009a0000 /* Camera class controls */
#define V4L2_CTRL_CLASS FM_TX 0x009b0000 /* FM Modulator controls */
#define V4L2_CTRL_CLASS FLASH 0x009c0000 /* Camera flash controls */
#define V4L2_CTRL_CLASS _JPEG 0x009d0000 /* JPEG-compression controls */

#define V4L2_CTRL_CLASS IMAGE_SOURCE 0x009e0000 /* Image source controls */
#define V4L2_CTRL_CLASS IMAGE_PROC 0x009f0000 /*Image processing controls */
#define V4L2_CTRL_CLASS DV 0x00a00000 /* Digital Video controls */

#define V4L2_CTRL_CLASS FM_RX 0x00a10000 /* FM Receiver controls */

#define V4L2_CTRL_CLASS RF_TUNER 0x00a20000 /* RF tuner controls */

#define V4L2_CTRL_CLASS DETECT 0x00a30000 /* Detection controls */

Foundry Design Services (FDS) SW 6

Controlling V4L2 devices — Standard controls &3 &

QO V4L2 framework provides standard controls with predefined control IDs

/" User-class control IDs */

#define V4L2_CID_BASE (V4L2_CTRL_CLASS_USER | 0x900)
#define V4L2_CID_USER_BASE V4L2_CID_BASE

#define V4L2_CID_USER_CLASS (V4L2_CTRL_CLASS_USER| 1)
#define V4L2_CID_BRIGHTNESS (V4L2_CID_BASE+Q)

#define V4L2_CID_CONTRAST (V4L2_CID_BASE+1)

#define V4L2_CID_SATURATION (V4L2_CID_BASE+2)

#define V4L2_CID_HUE (V4L2_CID_BASE+3)

#define V4L2_CID_AUDIO_VOLUME (V4L2_CID_BASE+5)

#define V4L2_CID_AUDIO_BALANCE (V4L2_CID_BASE+6)

#define V4L2_CID_AUDIO_BASS (V4L2_CID_BASE+T)

#define V4L2_CID_AUDIO_TREBLE (V4L2_CID_BASE+8)

#define V4L2_CID_AUDIO_MUTE (V4L2_CID_BASE+9)

#define V4L2_CID_AUDIO_LOUDNESS (V4L2_CID_BASE+10)

#define V4L2_CID_BLACK_LEVEL (V4L2_CID_BASE+11) /* Deprecated */

#define V4L2_CID_AUTO_WHITE_BALANCE (V4L2_CID_BASE+12)
#define V4L2_CID_DO_WHITE_BALANCE (V4L2_CID_BASE+13)

#define V4L2_CID_RED_BALANCE (V4L2_CID_BASE+14)

#define V4L2_CID_BLUE_BALANCE (V4L2_CID_BASE+15)

#define V4L2_CID_GAMMA (V4L2_CID_BASE+16)
#define V4L2_CID_WHITENESS (V4L2_CID_GAMMA) /* Deprecated */

#define V4L2_CID_EXPOSURE (V4L2_CID_BASE+17)

#define V4L2_CID_AUTOGAIN (V4L2_CID_BASE+18)

#define V4L2_CID_GAIN (V4L2_CID_BASE+19)
#define V4L2_CID_HFLIP (V4L2_CID_BASE+20)
#define V4L2_CID_VFLIP (V4L2_CID_BASE+21)
#define V4L2_CID_COLORFX_CBCR (V4L2_CID_BASE+42)

MlastCID + 1%
#define V4L2_CID_LASTP1 (V4L2_CID_BASE+43)

Foundry Design Services (FDS) SW 7

€Embedded Linux

Controlling V412 devices — Extended controls Conference

O Extended controls for Camera Class
include/uapi/linux/v4i2-controls.h

#define VAL2_CID_EXPOSURE_AUTO (VAL2 CID CAMERA_CLASS BASE+1)
enum v4l2_exposure_auto_type {

V4L2 EXPOSURE AUTO=0,

VAL2 EXPOSURE MANUAL =1,

VAL2 EXPOSURE _SHUTTER_PRIORITY =2,

VAL2 EXPOSURE APERTURE_PRIORITY=3
};
#define V4L2_CID _EXPOSURE_ABSOLUTE (V4L2 CID_CAMERA_CLASS BASE+2)
#define V4L2_CID _EXPOSURE_AUTO_PRIORITY (V4L2 _CID_CAMERA_CLASS BASE+3)

#define VAL2_CID_PAN RELATIVE
#define VAL2_CID_TILT RELATIVE
#define VAL2_CID_PAN_RESET
#define VAL2_CID TILT RESET

#define VAL2_CID_PAN ABSOLUTE
#define VAL2_CID_TILT ABSOLUTE

#define VAL2_CID_FOCUS_ABSOLUTE
#define VAL2_CID_FOCUS_RELATIVE
#define VAL2_CID_FOCUS_AUTO

#define VAL2 CID_PAN_SPEED
#define VAL2_CID TILT SPEED

(VAL2 CID CAMERA_CLASS BASE+4)
(VAL2 CID CAMERA_CLASS BASE+5)

(VAL2 CID CAMERA_CLASS BASE+6)
(VAL2 CID CAMERA_CLASS BASE+7)

(VAL2 CID CAMERA_CLASS BASE+8)
(VAL2 CID CAMERA_CLASS BASE+9)

(VAL2 CID CAMERA_CLASS BASE+10)
(VAL2 CID CAMERA_CLASS BASE+11)

(VAL2 CID CAMERA_CLASS BASE+12)

(VAL2 CID CAMERA_CLASS BASE+32)
(VAL2 CID CAMERA_CLASS BASE+33)

Foundry Design Services (FDS) SW S

Controlling V4L2 devices — Custom controls £3 &

O Often devices provide controls which are specific to that device and not available
in standard or extended controls
Q Sensor specific parameters
O Test pattern generation
Q Set number of data lanes to stream (e.g. for MIPI-CSI2 interface)
Q Set per stream controls
= Error count threshold
= DMA controls

Q Any other controls which are driver specific (Implemented in driver using
V4L2 CID_PRIVATE BASE or higher values)

Foundry Design Services (FDS) SW 9

Controlling V4L2 devices — Inheriting controls§3emmese

Q Controls from one handler can be added Q Useful when controls implemented by

to another two devices are same, thus avoids
include/media/v4i2-ctris.h rei m p | eme ntatio N
int v412_ctrl_add_handler(struct v4I2_ctrl_handler *hdl, Q e.g. controls like gain, brightness,
struct v412_ctrl_handler *add, . .
V412 ctrl filter filter, exposure which are mplemented Igy
bool from_other_dev); sensor can be reused in bridge device
node

Q filter: function to select the controls to
be added

= controls can also be filtered based on class
to which they belong using
V4L2 CTRL_ID2WHICH() helper

Q from_other_dev: controls are defined in
another device

Foundry Design Services (FDS) SW 10

Controlling V4L2 devices — Private controls §3&nsedsed i

d Controls may not be always needed by bridge device node

Q e.g. advanced debug feature particular to sensor is not needed at video device
node

QA struct v412_ctrl provides bit mapped variable is_private to inform the

framework exclude the control to be added to another handler

Q Setting is_private prevents the control being added from sub-device to root
device during v412 _device_register_subdev() call

Foundry Design Services (FDS) SW 11

Controlling V412 devices — Control flags R

a Following control flags are available for V4L2 devices

include/uapi/linux/videodev2.h

/* Control flags */

#define V412 CTRL _FLAG DISABLED 0x0001
#define VAL2_CTRL_FLAG_GRABBED 0x0002
#define VAL2_CTRL_FLAG_READ ONLY 0x0004

#define V4L2_CTRL_FLAG_UPDATE 0x0008
#define V4L2 CTRL_FLAG_INACTIVE 0x0010
#define V4L2_CTRL_FLAG_SLIDER 0x0020

#define V4L2_CTRL_FLAG_WRITE_ONLY 0x0040
#define V4L2_CTRL_FLAG_VOLATILE ~ 0x0080
#define V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100
#define V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200
#define V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400

Foundry Design Services (FDS) SW 12

Controlling VV4L2 devices — VVAL2 Control Notification @3 ensedded unux

Q Used to notify the change in control’s value.

Q Notification will be helpful in case of inherited controls.

Q e.g. sometimes the platform or bridge drivers need to be notified when
control from sub-device driver changes.

a Only one notify function should be used per control handler.
3 You can set a notify callback by calling below function.

void v412_ctrl_notify(struct v4l2_ctrl *ctrl, v4l2_ctrl_notify fnc notify,
void *priv);

Foundry Design Services (FDS) SW 13

€Embedded Linux

Integration with Linux media controller framework @@nfem

O Media device consists of media pipeline involving sub-devices (media entities) with links
between pads (source, sink)

Q struct media_device
O Media Entity
O Describes basic hardware block

Q Off the chip devices such as sensors or, On chip IPs such as ISP or any logical device participating in strea
ming pipeline such as the DMA engine

Q struct media_entity
QO Media Pad

O Connection endpoint through which entities transfer data
QO Source and Sink pads

Q struct media_pad
O Media Link

QO Connection between two pads, either on same entity or between different entities

Q struct media_link

Foundry Design Services (FDS) SW 14

Embedded Linux

Integration with Linux media controller framework (Cont’d.) @ Confelience

O Diagrammatic representation

Media device Media entity

Medi:; pad Medié link

Foundry Design Services (FDS) SW 15

€Embedded Linux

Integration with Linux media controller framework (Cont’d.) @ Confelience

O VA4L2 device abstraction

QO Uses struct media_device to abstract struct v4/2_device objects
include/media/v4i2-device.h
struct v412_device {

struct device *dev;
struct media_device *mdev;

hs

O VA4L2 sub-devices and video devices are observed as media entities

include/media/v412-subdev.h include/media/v412-dev.h
struct v412_subdev { struct video_device
#if defined(CONFIG_MEDIA_CONTROLLER) {

struct media_entity entity; #if defined(CONFIG_MEDIA_CONTROLLER)
#endif struct media_entity entity;

struct media_intf_devnode *intf_devnode;
b struct media_pipeline pipe;

#endif

i
QO type field of struct media_entity is set to MEDIA_ENTITY _TYPE V4L2 SUBDEV or MEDIA _ENTITY _TYPE VIDEO DEVICE

Foundry Design Services (FDS) SW 16

€Embedded Linux

Integration with Linux media controller framework (Cont’d.) @ B

Q VA4L2 driver initializes the media device within struct v4l12_device using
media_device_init()

struct v412_device {
struct device *dev;
struct media_device *mdev;

k
O Each entity driver initializes its entities and pad arrays
O v4I2_subdev->entity
Q video_device->entity
QO media_entity _pads_init()
O Controls set by V4L2 driver are applicable for each media entity

Foundry Design Services (FDS) SW 17

Leveraging controls from User space application £33 &nsdded tinux

Q VA4L2 framework provides IOCTLs to
QO Enumerate the controls provided by driver
» VIDIOC_QUERYCTRL
= VIDIOC _QUERY _EXT_CTRL
O Get control value
« VIDIOC_G_CTRL
« VIDIOC_G_EXT_CTRLS
O Set control value
« VIDIOC_S_CTRL
« VIDIOC_S_EXT _CTRLS
» VIDIOC_TRY_EXT_CTRLS

Q Drivers must implement these IOCTLs when device has one or more controls

Q Custom control IDs must be exposed to applications from header files under
“include/uapi/linux/”

Foundry Design Services (FDS) SW 18

Leveraging controls from User space application (Cont’d.) @ Eppedal Linux

d Enumerate all the User controls

for (queryctrl.id = V4L2_CID_BASE;
queryctrl.id < V4L2_CID_LASTP1;
queryctrl.id++) {
if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)){
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
continue;

d Enumerate the controls provided by driver

for (queryctrl.id = VV4L2_CID_PRIVATE_BASE;;
queryctrl.id++) {
if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)){
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
continue;

printf("Control %s\n", queryctrl.name);

Foundry Design Services (FDS) SW 19

Conference

Leveraging controls from User space application - Changing controls @ Embsaged Lintix

O Query the desired user control
Q Use VIDIOC G _CTRL and VIDIOC S CTRL to get or set the control value

struct v412_queryctrl queryctrl;
struct v412_control control;

memset{&queryctrl, 0, sizeof{queryctrl));
queryctrl.id = V4L2_CID_CUSTOM_CONTROL 1;

if (-1 == ioctl{sd_fd, VIDIOC _QUERYCTRL, &queryctrl)) {
perror(" V4L2_CID_CUSTOM_CONTROL_1 notsupported!\n");
exit(EXIT_FAILURE);

}

memset(&control, 0, sizeoffcontrol));
control.id = V4L2_CID_CUSTOM_CONTROL 1;

if (0 == joctl(fd, VIDIOC _G_CTRL, &control)) {
/¥ set the desired value */
control.value = x;

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)
&& errno I= ERANGE) {
perror("VIDIOC S _CTRL");
exit(EXIT_FAILURE);
}

}else if (errno I= EINVAL) {
perror("VIDIOC_G_CTRL");
exit(EXIT_FAILURE);

}

Foundry Design Services (FDS) SW 20

Notes on Implementing Controls E e Lo

Q Driver implementation of controls need to be documented

QO “Documentation/userspace-api/media/drivers/”
QO Useful for custom controls

Q v4/2 subdev controls can be overwritten by v4/2_dev during sub-device
registration

QO Decide which controls need protection
Q Set is_private flag for sub-device controls which need protection
QO Adding controls to v4/2_subdev after the device is registered will not have any effect
= Add the required controls for the sub-device prior to v4/2_device_register _subdev()
Q Set the controls to default value

Q Callv4i2_ctrl_handler_setup() for the control handler and initialize any hardware
control values

Q Helps avoiding setting the hardware device to default values from user application

Foundry Design Services (FDS) SW 21

Sample capture device with controls PR nih et Linux

Q 2 Camera sensors connected to Serializer

O Image streams aggregated by Serializer, Deserializer and received by Host at MIPI CSI2 Rx port
Q Streaming RAW12 Bayer images

I}

RAW12 Capture0 RAW12 Capture1
Jdev/videoO Jdev/video1

Foundry Design Services (FDS) SW 22

How to add controls? E e Lo

Q Driver needs to fill struct v412_ctrl_config and struct v412_ctrl_ops
Q After initializing above structures, now controls are ready to get initialized

struct v412_ctrl *v4i2_ctrl_new_custom(struct v412_ctrl_handler *hd|,
const struct v412_ctrl_config *cfgq,
void *priv);
struct v412_ctrl *v4i2_ctrl_new_std(struct v412_ctrl_handler *hdl,
const struct v412_ctrl_ops *ops,
u32id, s64 min, s64 max, u64 step,
564 def);

struct v412_ctrl *v4i2_ctrl_new_std_menu(struct v4i2_ctrl_handler *hdI,

const struct v412_ctrl_ops *ops,
u32id, u8 max, u64 mask, u8 def);

Q Driver should use these functions to register for custom or standard controls

QO Depending on the type of the control registration function will change

Foundry Design Services (FDS) SW 23

Structure v4l2_ctrl_config 3

€Embedded Linux
Conference

Q Exploring v4I2_ctrl _config structure

include/media/v4i2-ctris.h

struct v412_ctrl_config {
const struct v4i2_ctrl_ops *ops;
u32id;
const char *name;
enum v4l2_ctrl_type type;
s64 min;
s64 max;
ué4 step,
s64 def;
unsigned intis_private:1;

Foundry Design Services (FDS) SW

ops — Callback used to handle the controls.

id — Control id.

name — Driver will set the name.

min — Minimum value the control allows.

max — Maximum value the control allows.
def—v412_ctrl_handler_setup function will set control to
default value.

is_private — set this to prevent control used by other control
handler.

Additional fields which can be used depending on
control type implementation.

24

Structure v4l2_ctrl_ops €3 Eomenaeg inex

include/media/v4[2-ctrls.h

struct v412_ctrl_ops {
int (*g_volatile_ctrl)(struct v412_ctrl *ctrl);
int (*try_ctrl)(struct v412_ctrl *ctrl);
int (*s_ctrl)(struct v412_ctrl *ctrl);

k-

Q g_volatile_ctrl: Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that return the current signal strength which
changes continuously. If not set, then the currently cached value will be returned

Q try_ctrl: Test whether control’s value is valid. Only relevant when the usual min/max/step
checks are not sufficient

Q s_ctrl: Actually set the new control value .s_ctrlis compulsory. The ctrl->handler-> lock is held
when these ops are called, so no one else can access controls owned by that handler

Foundry Design Services (FDS) SW 25

val2_ctrl_ops— An Example fienihduad ou

A Driver should initialize v412_ctrl_ops and define s_ctrl callback to implement different
control functionality

sample_capture_ip.c

int capture_ip_s_ctri(struct v412_ctrl *ctrl)
{
switch (ctrl->id) {
case V4L2 _CID_USER_NO_OF_LANE:
/*handles HW or SW related functionality */

break;
default:
break;

}

returnO;

}

static const struct v412_ctrl_ops capture_ctrl_ops = {
.5_ctrl = capture_ip_s_ctrl,

I

Foundry Design Services (FDS) SW 26

Structure and example for adding controls §3 & inex

O Example for setting number of lanes used to receive the frames

O min and max are minimum and maximum number of lanes used to receive the
frames

Q step is used to set intermediate value between min and max no of lanes

sample_capture_ip.c

static const struct v412_ctrl_config capture_ip_set_nb_lane={
.ops = &capture_ctrl_ops,
id =V4L2_CID_USER_NO_OF_LANE,
.type =V4L2 _CTRL_TYPE_INTEGER,
.name = "no of lanes",

.min =1,
step =1,
.max =4,
def =1,

hs

static int capture_probe(struct platform_device *pdev)

{

v4i2_ctrl_new_custom(&dev->ctrl_handler, &capture_ip_set_nb_lane, NULL);

}
Foundry Design Services (FDS) SW 27

Steps to implement control handler.in driver §3&mess.

Q Add the v4I2 ctrl_handler structure to the top level structure or driver’s private
structure

Q For V4L2 driver add at the same level where V4L2 device is present

Q Initialize the control handler

O Add all the necessary controls to your device as discussed in previous slides
QO Optionally force initialization of all the controls

Q Free the control handler when device is leaving or removed

Foundry Design Services (FDS) SW 28

Adding Control Handler — An Example PR nih et Linux

d Implementation of steps discussed in previous slide

sample_capture_ip.c
struct capture_dev {
;ilruct v4I2_device v412_dev;
;ilruct v4I2_ctrl_handlerctrl_handler;
4
struct capture_dev *cap_dev

static int capture_probe(struct platform_device *pdev)

{

v4i2_ctrl_handler_init(&cap_dev->ctrl_handler, nr_of controls);
cap_dev->v4l2_dev.ctrl_handler= &cap_dev->ctrl_handler;
v4i2_ctrl_new_custom(&cap_dev->ctrl_handler, &capture_ip_set_nb_lane, NULL);
/* Add control like above as discussed in how to add control section */

/* this step complety optional */
v4i2_ctrl_handler_setup(&dev->ctrl_handler);

Foundry Design Services (FDS) SW 29

Conference

How to Implement Control Notification?. = §3&nseded

static void sensor_ctrl_notify(struct v412_ctrl *ctrl, void *priv)

{
switch(ctrl->id)
{
case V4L2 CID_USER_NO_OF LANE:
/* Sync the data structures */
break;
}
}
static int sensor_probe(struct platform_device *pdev)
{
/* After adding control to the control handler */
v412_ctrl_notify(v4l2_ctrl find(hdl, V4L2 _CID USER NO_OF LANE,
sensor_ctrl_notify, priv);
}

Foundry Design Services (FDS) SW 30

Conference

VA4lL.2-ctl utils @ Embedded Linux

Q v4l2-ctl --list-device
Q List all the v4l2-device with video device number and corresponding name
vdl2-ctl --list-device

csis (platform:csise-000):
/dev/videosd

csis (platform:csise-8081):
Jdev/videnl

Foundry Design Services (FDS) SW

31

V4L2-ctl utils (Cont’d.) 3 Emerence ™

Q v412-ctl --all --device /dev/video{n}

Q Gives information about driver name, card type, bus info, driver version
and device capabilities (video capture and streaming)

O Default width, height and pixel format

walz-ctl --all --dewvice ysdew/videoo
Driver Info (not using Llibw4al2):

Driver name H CcCs1s

Card type : csis

Bus info : platform:csis0-080
Driver wversion: 5.4.161
Capabilities : ExS84200001

Video Capture

Streaming

Extended Pix Format

Dewvice Capabilities
Dewvice Caps : Dxed4Z2EEE01

Video Capture

Streaming

Extended Pix Format

Priority: 2

video 1nput : @ (Camera @

- ok)

Format Video Capture:
wWidthys/He ight : llse/720
Pixel Format : 'BAlZ2"
Field : None
Bytes per Line I : |
Size Image E -
Colorspace 1 Raw

Transter Function : Unknown (BxB88B8BS80)
YCbCr/HSV Encoding: Unknown (Bx20BES8000)
Quantization : Unkrnown (oxeeeeffff)
Flags H

User Controls

brightness ox00980988 (i1nt) D min=-208 max=127 step=1 default=0 walue=8 flags=slider
contrast OxEOE988981 (int) : min=-127 max=127 step=1 default=0 walue=6 flags=slider
saturation ExEEIEE902Z (int) : min=-127 max=127 step=1 default=0 walue=8 flags=slider
sharpness @xee93e91b (int) : min=-127 max=127 step=1 default=0 walue=8 flags=slider
csis_no_of_lanes expe98l9ce (int) : min=1 max=4 step=1 default=1 walue=3
csis_set_dec_phy mode 0x009819c3 (bool) : default=0 walue=0 flags=update

Foundry Design Services (FDS) SW

32

V4L2-ctl utils (Cont’d.)

€Embedded Linux
Conference

Q v412-ctl --list-ctrls --device /dev/video{n}

Q List all the control owned by the device.

Q Gives information about control name, control id, type of control, min,
max, default, current value and flag.

wdl2z-ctl --list-ctrls --device sdev/videoB

User Controls

brightness

contrast

saturation

sharpness

csis_no_of lanes
csis_set_dc_phy_mode

Foundry Design Services (FDS) SW

OxBbE930%00
OxBbE930%01
Ox00980902
0x0098091b
BxBE9819cH
BxBBE9819c3

(1nt)
(int)
(int)
{1int)
(1nt)
(bool)

33

: min=-208 max=127 step=1 default=0
: min=-127 max=127 step=1 default=0
: min=-127 max=127 step=1 default=0
: min=-127 max=127 step=1 default=06
: min=1 max=4 step=1 default=1 value=3
: default=0 value=0 flags=update

value=0 flags=slider
value=0 flags=slider
value=0 flags=slider
value=0 flags=slider

V4L2-ctl utils (Cont’d.) B ke i

Conference

Q v4l2-ctl --device /dev/video{n} --get-ctrl={control_name}
Q Used to get current value of the control for given device.

vdl2-ctl --device fdev/video® --get-ctrl=csis _no_of lanes
csis_no_of lanes: 1

Q v4l2-ctl --device /dev/video{n} --set-ctrl={control_name} ={value}
Q Used to set the control to new value for given device.

vdl2-ctl --device sdev/videof --set-ctrl=csis_no_of_lanes=2
vdl2-ctl --device fdewv/video® --get-ctrl=csis no_of lanes
csis_no_of lanes: 2

Foundry Design Services (FDS) SW 34

Conference

V4L2-ctl utils (Cont’d.) £ 3 b e Linue

Q v4l2-ctl --d /dev/video{n} --log-status

Q Gives the current value of all the controls owned by the device
v4l2-ctl -d sdev/videod --log-status

Status Log:

[1176.975940] 001: csis0-000: START STATUS

[1176.975948] 801: w4lZ2-ctrls: csis@-088: CSIS no of lanes: 2

[1176.975957] 8681: wvAlZ-ctrls: csis@-088: CSIS set DC-PHY mode: false
[1176.975960] GB1: csis0-000: END STATUS

Foundry Design Services (FDS) SW

35

I—F'J_D
= SSIR | |
—=0 Samsung Semiconductor India R&D Center

