
Foundry Design Services (FDS) SW 0

Sathyakam M, Inbaraj E

Foundry Design Services (FDS) SW 1

❑ Structure of V4L2 framework

 V4L2 device
 V4L2 sub-device
 Video device nodes
 V4L2 control objects

❑ Controlling V4L2 devices

 Why are controls needed?
 Control methods provided by V4L2
 Leveraging controls from User space application
 Notes on implementing controls

❑ Sample capture device with controls

Foundry Design Services (FDS) SW 2

❑ Typical video capture involves multiple devices, which can include a bridge device and
one or more sub-devices

 e.g. Streaming with remote cameras can have multiple sensors, Serializer and Deserializers

combination to aggregate camera streams and camera interface controllers

Foundry Design Services (FDS) SW 3

V4L2 framework provides kernel data structures for drivers to describe the
bridge device and attached sub-devices
❑ struct v4l2_device: Is the top level data structure acting as root node of streaming device and

is responsible for managing the child devices

❑ struct v4l2_subdev: The sub-devices attached to the bridge device are represented with
struct v4l2_subdev. These can be camera interface controller in host processor or the camera
sensors providing the image stream.

❑ struct video_device: Abstracts the capture interface and exposes the device nodes under
“/dev/” directory

❑ struct v4l2_ctrl: Describes control properties and tracks control value

❑ struct v4l2_ctrl_handler: Keeps track of all controls within the device

Foundry Design Services (FDS) SW 4

❑Block Diagram and Associated V4L2 objects

Foundry Design Services (FDS) SW 5

❑ Controls are needed
 Due to diverse nature of capture

devices, most of the devices expose
controls that are configurable by user

 Controls provided can be specific to the
device which are vendor specific

 Device control needs can be application
specific as well

❑ V4L2 framework provides methods to
set the controls by user

▪ Standard controls

▪ Extended controls

▪ Custom controls

▪ Private controls

❑ Capturing and streaming the images
can implement all or some of the
required controls

Foundry Design Services (FDS) SW 6

❑ Controls are accessed using control ID value

❑ V4L2 framework arranges the controls into classes which serve as base for
control IDs

Foundry Design Services (FDS) SW 7

❑ V4L2 framework provides standard controls with predefined control IDs

Foundry Design Services (FDS) SW 8

❑ Extended controls for Camera Class

Foundry Design Services (FDS) SW 9

❑ Often devices provide controls which are specific to that device and not available
in standard or extended controls
 Sensor specific parameters

 Test pattern generation

 Set number of data lanes to stream (e.g. for MIPI-CSI2 interface)

 Set per stream controls

▪ Error count threshold

▪ DMA controls

 Any other controls which are driver specific (Implemented in driver using
V4L2_CID_PRIVATE_BASE or higher values)

Foundry Design Services (FDS) SW 10

❑ Controls from one handler can be added
to another

 filter: function to select the controls to
be added

▪ controls can also be filtered based on class

to which they belong using

V4L2_CTRL_ID2WHICH() helper

 from_other_dev: controls are defined in
another device

❑ Useful when controls implemented by
two devices are same, thus avoids
reimplementation
 e.g. controls like gain, brightness,

exposure which are implemented by
sensor can be reused in bridge device
node

Foundry Design Services (FDS) SW 11

❑ Controls may not be always needed by bridge device node
 e.g. advanced debug feature particular to sensor is not needed at video_device

node

❑ struct v4l2_ctrl provides bit mapped variable is_private to inform the
framework exclude the control to be added to another handler
 Setting is_private prevents the control being added from sub-device to root

device during v4l2_device_register_subdev() call

Foundry Design Services (FDS) SW 12

❑ Following control flags are available for V4L2 devices

Foundry Design Services (FDS) SW 13

❑Used to notify the change in control’s value.

❑Notification will be helpful in case of inherited controls.
 e.g. sometimes the platform or bridge drivers need to be notified when

control from sub-device driver changes.

❑Only one notify function should be used per control handler.

❑ You can set a notify callback by calling below function.

Foundry Design Services (FDS) SW 14

❑ Media device consists of media pipeline involving sub-devices (media entities) with links
between pads (source, sink)

 struct media_device

❑ Media Entity

 Describes basic hardware block

 Off the chip devices such as sensors or, On chip IPs such as ISP or any logical device participating in strea

ming pipeline such as the DMA engine

 struct media_entity

❑ Media Pad

 Connection endpoint through which entities transfer data

 Source and Sink pads

 struct media_pad

❑ Media Link

 Connection between two pads, either on same entity or between different entities

 struct media_link

Foundry Design Services (FDS) SW 15

❑ Diagrammatic representation

Foundry Design Services (FDS) SW 16

❑ V4L2 device abstraction

 Uses struct media_device to abstract struct v4l2_device objects

❑ V4L2 sub-devices and video devices are observed as media entities

 type field of struct media_entity is set to MEDIA_ENTITY_TYPE_V4L2_SUBDEV or MEDIA_ENTITY_TYPE_VIDEO_DEVICE

Foundry Design Services (FDS) SW 17

❑ V4L2 driver initializes the media device within struct v4l2_device using
media_device_init()

❑ Each entity driver initializes its entities and pad arrays

 v4l2_subdev->entity

 video_device->entity

 media_entity_pads_init()

❑ Controls set by V4L2 driver are applicable for each media entity

Foundry Design Services (FDS) SW 18

❑ V4L2 framework provides IOCTLs to

 Enumerate the controls provided by driver

▪ VIDIOC_QUERYCTRL

▪ VIDIOC_QUERY_EXT_CTRL

 Get control value

▪ VIDIOC_G_CTRL

▪ VIDIOC_G_EXT_CTRLS

 Set control value

▪ VIDIOC_S_CTRL

▪ VIDIOC_S_EXT_CTRLS

▪ VIDIOC_TRY_EXT_CTRLS

❑ Drivers must implement these IOCTLs when device has one or more controls

❑ Custom control IDs must be exposed to applications from header files under
“include/uapi/linux/”

Foundry Design Services (FDS) SW 19

❑ Enumerate all the User controls

❑ Enumerate the controls provided by driver

Foundry Design Services (FDS) SW 20

❑ Query the desired user control

❑ Use VIDIOC_G_CTRL and VIDIOC_S_CTRL to get or set the control value

Foundry Design Services (FDS) SW 21

❑ Driver implementation of controls need to be documented

 “Documentation/userspace-api/media/drivers/”

 Useful for custom controls

❑ v4l2_subdev controls can be overwritten by v4l2_dev during sub-device
registration

 Decide which controls need protection

 Set is_private flag for sub-device controls which need protection

 Adding controls to v4l2_subdev after the device is registered will not have any effect

▪ Add the required controls for the sub-device prior to v4l2_device_register_subdev()

❑ Set the controls to default value

 Call v4l2_ctrl_handler_setup() for the control handler and initialize any hardware

control values

 Helps avoiding setting the hardware device to default values from user application

Foundry Design Services (FDS) SW 22

❑ 2 Camera sensors connected to Serializer

❑ Image streams aggregated by Serializer, Deserializer and received by Host at MIPI CSI2 Rx port

❑ Streaming RAW12 Bayer images

Foundry Design Services (FDS) SW 23

❑ Driver needs to fill struct v4l2_ctrl_config and struct v4l2_ctrl_ops

❑ After initializing above structures, now controls are ready to get initialized

❑ Driver should use these functions to register for custom or standard controls
 Depending on the type of the control registration function will change

Foundry Design Services (FDS) SW 24

❑ Exploring v4l2_ctrl_config structure

Foundry Design Services (FDS) SW 25

❑ g_volatile_ctrl: Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that return the current signal strength which
changes continuously. If not set, then the currently cached value will be returned

❑ try_ctrl: Test whether control’s value is valid. Only relevant when the usual min/max/step
checks are not sufficient

❑ s_ctrl: Actually set the new control value .s_ctrl is compulsory. The ctrl->handler-> lock is held
when these ops are called, so no one else can access controls owned by that handler

Foundry Design Services (FDS) SW 26

❑ Driver should initialize v4l2_ctrl_ops and define s_ctrl callback to implement different
control functionality

Foundry Design Services (FDS) SW 27

❑ Example for setting number of lanes used to receive the frames

❑ min and max are minimum and maximum number of lanes used to receive the
frames

❑ step is used to set intermediate value between min and max no of lanes

Foundry Design Services (FDS) SW 28

❑ Add the v4l2_ctrl_handler structure to the top level structure or driver’s private
structure

❑ For V4L2 driver add at the same level where V4L2 device is present

❑ Initialize the control handler

❑ Add all the necessary controls to your device as discussed in previous slides

❑ Optionally force initialization of all the controls

❑ Free the control handler when device is leaving or removed

Foundry Design Services (FDS) SW 29

❑ Implementation of steps discussed in previous slide

Foundry Design Services (FDS) SW 30

Foundry Design Services (FDS) SW 31

❑ v4l2-ctl --list-device
 List all the v4l2-device with video device number and corresponding name

Foundry Design Services (FDS) SW 32

❑ v4l2-ctl --all --device /dev/video{n}
 Gives information about driver name, card type, bus info, driver version

and device capabilities (video capture and streaming)
 Default width, height and pixel format

Foundry Design Services (FDS) SW 33

❑ v4l2-ctl --list-ctrls --device /dev/video{n}
 List all the control owned by the device.
 Gives information about control name, control id, type of control, min,

max, default, current value and flag.

Foundry Design Services (FDS) SW 34

❑ v4l2-ctl --device /dev/video{n} --get-ctrl={control_name}
 Used to get current value of the control for given device.

❑ v4l2-ctl --device /dev/video{n} --set-ctrl={control_name} ={value}
 Used to set the control to new value for given device.

Foundry Design Services (FDS) SW 35

❑ v4l2-ctl --d /dev/video{n} --log-status
 Gives the current value of all the controls owned by the device

Foundry Design Services (FDS) SW 36

Any Questions ?

Foundry Design Services (FDS) SW 37

