
Foundry Design Services (FDS) SW 0

Sathyakam M, Inbaraj E

Foundry Design Services (FDS) SW 1

❑ Structure of V4L2 framework

 V4L2 device
 V4L2 sub-device
 Video device nodes
 V4L2 control objects

❑ Controlling V4L2 devices

 Why are controls needed?
 Control methods provided by V4L2
 Leveraging controls from User space application
 Notes on implementing controls

❑ Sample capture device with controls

Foundry Design Services (FDS) SW 2

❑ Typical video capture involves multiple devices, which can include a bridge device and
one or more sub-devices

 e.g. Streaming with remote cameras can have multiple sensors, Serializer and Deserializers

combination to aggregate camera streams and camera interface controllers

Foundry Design Services (FDS) SW 3

V4L2 framework provides kernel data structures for drivers to describe the
bridge device and attached sub-devices
❑ struct v4l2_device: Is the top level data structure acting as root node of streaming device and

is responsible for managing the child devices

❑ struct v4l2_subdev: The sub-devices attached to the bridge device are represented with
struct v4l2_subdev. These can be camera interface controller in host processor or the camera
sensors providing the image stream.

❑ struct video_device: Abstracts the capture interface and exposes the device nodes under
“/dev/” directory

❑ struct v4l2_ctrl: Describes control properties and tracks control value

❑ struct v4l2_ctrl_handler: Keeps track of all controls within the device

Foundry Design Services (FDS) SW 4

❑Block Diagram and Associated V4L2 objects

Foundry Design Services (FDS) SW 5

❑ Controls are needed
 Due to diverse nature of capture

devices, most of the devices expose
controls that are configurable by user

 Controls provided can be specific to the
device which are vendor specific

 Device control needs can be application
specific as well

❑ V4L2 framework provides methods to
set the controls by user

▪ Standard controls

▪ Extended controls

▪ Custom controls

▪ Private controls

❑ Capturing and streaming the images
can implement all or some of the
required controls

Foundry Design Services (FDS) SW 6

❑ Controls are accessed using control ID value

❑ V4L2 framework arranges the controls into classes which serve as base for
control IDs

Foundry Design Services (FDS) SW 7

❑ V4L2 framework provides standard controls with predefined control IDs

Foundry Design Services (FDS) SW 8

❑ Extended controls for Camera Class

Foundry Design Services (FDS) SW 9

❑ Often devices provide controls which are specific to that device and not available
in standard or extended controls
 Sensor specific parameters

 Test pattern generation

 Set number of data lanes to stream (e.g. for MIPI-CSI2 interface)

 Set per stream controls

▪ Error count threshold

▪ DMA controls

 Any other controls which are driver specific (Implemented in driver using
V4L2_CID_PRIVATE_BASE or higher values)

Foundry Design Services (FDS) SW 10

❑ Controls from one handler can be added
to another

 filter: function to select the controls to
be added

▪ controls can also be filtered based on class

to which they belong using

V4L2_CTRL_ID2WHICH() helper

 from_other_dev: controls are defined in
another device

❑ Useful when controls implemented by
two devices are same, thus avoids
reimplementation
 e.g. controls like gain, brightness,

exposure which are implemented by
sensor can be reused in bridge device
node

Foundry Design Services (FDS) SW 11

❑ Controls may not be always needed by bridge device node
 e.g. advanced debug feature particular to sensor is not needed at video_device

node

❑ struct v4l2_ctrl provides bit mapped variable is_private to inform the
framework exclude the control to be added to another handler
 Setting is_private prevents the control being added from sub-device to root

device during v4l2_device_register_subdev() call

Foundry Design Services (FDS) SW 12

❑ Following control flags are available for V4L2 devices

Foundry Design Services (FDS) SW 13

❑Used to notify the change in control’s value.

❑Notification will be helpful in case of inherited controls.
 e.g. sometimes the platform or bridge drivers need to be notified when

control from sub-device driver changes.

❑Only one notify function should be used per control handler.

❑ You can set a notify callback by calling below function.

Foundry Design Services (FDS) SW 14

❑ Media device consists of media pipeline involving sub-devices (media entities) with links
between pads (source, sink)

 struct media_device

❑ Media Entity

 Describes basic hardware block

 Off the chip devices such as sensors or, On chip IPs such as ISP or any logical device participating in strea

ming pipeline such as the DMA engine

 struct media_entity

❑ Media Pad

 Connection endpoint through which entities transfer data

 Source and Sink pads

 struct media_pad

❑ Media Link

 Connection between two pads, either on same entity or between different entities

 struct media_link

Foundry Design Services (FDS) SW 15

❑ Diagrammatic representation

Foundry Design Services (FDS) SW 16

❑ V4L2 device abstraction

 Uses struct media_device to abstract struct v4l2_device objects

❑ V4L2 sub-devices and video devices are observed as media entities

 type field of struct media_entity is set to MEDIA_ENTITY_TYPE_V4L2_SUBDEV or MEDIA_ENTITY_TYPE_VIDEO_DEVICE

Foundry Design Services (FDS) SW 17

❑ V4L2 driver initializes the media device within struct v4l2_device using
media_device_init()

❑ Each entity driver initializes its entities and pad arrays

 v4l2_subdev->entity

 video_device->entity

 media_entity_pads_init()

❑ Controls set by V4L2 driver are applicable for each media entity

Foundry Design Services (FDS) SW 18

❑ V4L2 framework provides IOCTLs to

 Enumerate the controls provided by driver

▪ VIDIOC_QUERYCTRL

▪ VIDIOC_QUERY_EXT_CTRL

 Get control value

▪ VIDIOC_G_CTRL

▪ VIDIOC_G_EXT_CTRLS

 Set control value

▪ VIDIOC_S_CTRL

▪ VIDIOC_S_EXT_CTRLS

▪ VIDIOC_TRY_EXT_CTRLS

❑ Drivers must implement these IOCTLs when device has one or more controls

❑ Custom control IDs must be exposed to applications from header files under
“include/uapi/linux/”

Foundry Design Services (FDS) SW 19

❑ Enumerate all the User controls

❑ Enumerate the controls provided by driver

Foundry Design Services (FDS) SW 20

❑ Query the desired user control

❑ Use VIDIOC_G_CTRL and VIDIOC_S_CTRL to get or set the control value

Foundry Design Services (FDS) SW 21

❑ Driver implementation of controls need to be documented

 “Documentation/userspace-api/media/drivers/”

 Useful for custom controls

❑ v4l2_subdev controls can be overwritten by v4l2_dev during sub-device
registration

 Decide which controls need protection

 Set is_private flag for sub-device controls which need protection

 Adding controls to v4l2_subdev after the device is registered will not have any effect

▪ Add the required controls for the sub-device prior to v4l2_device_register_subdev()

❑ Set the controls to default value

 Call v4l2_ctrl_handler_setup() for the control handler and initialize any hardware

control values

 Helps avoiding setting the hardware device to default values from user application

Foundry Design Services (FDS) SW 22

❑ 2 Camera sensors connected to Serializer

❑ Image streams aggregated by Serializer, Deserializer and received by Host at MIPI CSI2 Rx port

❑ Streaming RAW12 Bayer images

Foundry Design Services (FDS) SW 23

❑ Driver needs to fill struct v4l2_ctrl_config and struct v4l2_ctrl_ops

❑ After initializing above structures, now controls are ready to get initialized

❑ Driver should use these functions to register for custom or standard controls
 Depending on the type of the control registration function will change

Foundry Design Services (FDS) SW 24

❑ Exploring v4l2_ctrl_config structure

Foundry Design Services (FDS) SW 25

❑ g_volatile_ctrl: Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that return the current signal strength which
changes continuously. If not set, then the currently cached value will be returned

❑ try_ctrl: Test whether control’s value is valid. Only relevant when the usual min/max/step
checks are not sufficient

❑ s_ctrl: Actually set the new control value .s_ctrl is compulsory. The ctrl->handler-> lock is held
when these ops are called, so no one else can access controls owned by that handler

Foundry Design Services (FDS) SW 26

❑ Driver should initialize v4l2_ctrl_ops and define s_ctrl callback to implement different
control functionality

Foundry Design Services (FDS) SW 27

❑ Example for setting number of lanes used to receive the frames

❑ min and max are minimum and maximum number of lanes used to receive the
frames

❑ step is used to set intermediate value between min and max no of lanes

Foundry Design Services (FDS) SW 28

❑ Add the v4l2_ctrl_handler structure to the top level structure or driver’s private
structure

❑ For V4L2 driver add at the same level where V4L2 device is present

❑ Initialize the control handler

❑ Add all the necessary controls to your device as discussed in previous slides

❑ Optionally force initialization of all the controls

❑ Free the control handler when device is leaving or removed

Foundry Design Services (FDS) SW 29

❑ Implementation of steps discussed in previous slide

Foundry Design Services (FDS) SW 30

Foundry Design Services (FDS) SW 31

❑ v4l2-ctl --list-device
 List all the v4l2-device with video device number and corresponding name

Foundry Design Services (FDS) SW 32

❑ v4l2-ctl --all --device /dev/video{n}
 Gives information about driver name, card type, bus info, driver version

and device capabilities (video capture and streaming)
 Default width, height and pixel format

Foundry Design Services (FDS) SW 33

❑ v4l2-ctl --list-ctrls --device /dev/video{n}
 List all the control owned by the device.
 Gives information about control name, control id, type of control, min,

max, default, current value and flag.

Foundry Design Services (FDS) SW 34

❑ v4l2-ctl --device /dev/video{n} --get-ctrl={control_name}
 Used to get current value of the control for given device.

❑ v4l2-ctl --device /dev/video{n} --set-ctrl={control_name} ={value}
 Used to set the control to new value for given device.

Foundry Design Services (FDS) SW 35

❑ v4l2-ctl --d /dev/video{n} --log-status
 Gives the current value of all the controls owned by the device

Foundry Design Services (FDS) SW 36

Any Questions ?

Foundry Design Services (FDS) SW 37

