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Introduction
● Search with more breadth and depth

– Visit more layers
● This talk is not about vmlinux or kmalloc

– Not just reducing size. Goal is to add features 
without adding memory

● E.g. improve system performance under low memory 
situation

● About medium-sized embedded systems
– With DRAM + Flash, no swap partition
– Lightly configured kernel image fits in comfortably, 

but need more space for everything else
– Based on 2.6.2x, let me know if there are new 

changes
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Kernel Memory Lifecycle
● Understanding kernel memory lifecycle

– Memory is an active subsystem with its own behaviors
– Kernel gives away memory carelessly and let everyone 

keep it
● E.g., file caching, free memory in slab not returned 

immediately
– Sometimes try to get it back

● Periodic reclaiming from kswapd
● When there is not enough memory

● Most apparent effect of memory life cycle: Free 
memory in /proc/meminfo is usually low unless you 
have a lot of memory

– Never use the free memory number in /proc/meminfo as 
free memory is a fuzzy concept in Linux kernel. Think in 
terms of memory pressure instead



  

Improve System Low-Memory Behavior
Low memory system behavior can be poor in 
embedded systems
● Symptoms

– System slows down significantly when memory is 
low, but there is still enough memory

– OOM kills processes too eagerly
● Reasons

– Target system for typical kernel developers is DRAM 
+ hard drive, so some behaviors may not be the test 
fit for DRAM + Flash embedded systems



  

Improve System Low-Memory Behavior

– When memory is low, kernel spends a lot of time in 
kswapd trying swap out pages, but only with limited 
success – dirty pages have nowhere to go in a 
swapless system

● Performance impact
● More chances for memory-introduced deadlock

– Incremental search for free-able pages would not be 
optimal for better speed or reducing fragmentation 
under low memory conditions 

 
mmzone.h
 /*
  * The "priority" of VM scanning is how much of the queues we will scan in one
  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  * queues ("queue_length >> 12") during an aging round.
  */
  #define DEF_PRIORITY 12



  

Improve System Low-Memory Behavior
● Keep system running when memory is low

– Lower the priority kswap kernel thread
● Rationale: In a swapless system, it cannot really swap

– Made a big difference, no serious side effects
– When trying to free pages, look at more pages at the 

first try (make DEF_PRIORITY smaller)
● Not enough data to tell the effect

– Turn off OOM killer
● For small closed embedded system, every process is 

essential, as simple solution is to reboot the system 
instead of killing processes

● Excessive page frame reclaim activity can 
cause other problems as well

– Power management
– Real-time latency



  

● When kernel thinks memory is low?
● Parameters of interest: Minimum free memory 

standards maintained by kernel
– Reserved memory pool for GFP_ATOMIC

● /proc/sys/vm/min_free_kbytes
● Default value is calculated based on memory size

– Zone watermarks put a threshold on fragmentation
● Certain number of free pages at certain size
● See zone_watermark_ok function for details

● When the minimum standard cannot be met, 
kswapd will keep running

– Until it meets the standard or calls OOM killer

Tap Into Reserves



  

● Tweak possible
– Reduce reserved memory pool

● From sysfs in newer kernels, 
/proc/sys/vm/min_free_kbytes

– Lower fragmentation threshold
● Can change algorithm in zone_watermark_ok function

● Trade-offs
– Running out of memory in interrupt context
– Not enough big free memory blocks
– But for embedded systems we have better control, 

can be running closer to the limit

Tap Into Reserves



  

Fight Fragmentation
● Fragmented free memory can be as bad as no 

memory – don't ignore fragmentation
● Try not to create fragmentation 

– Preallocate memory when possible
– Write a task-specific memory allocator if needed

● Able to use fragmented memory
– Use vmalloc for allocating bigger memory blocks
– Move code to user space

● Already discussed
– Lower fragmentation threshold 
– When trying to free pages, look at more pages at the 

first try
● Not enough data to tell the effect



  

More on Kernel Memory
● Alternative allocators

– SLOB
– SLUB

● Reference
– “Understanding the Linux Kernel” Bovet & Cesati. 

O'Reilly Media



  

System Design Issue: 
MMU Is An Advantage, Use It

uClinux may look like an interesting option, but 
regular kernel with virtual memory is a better 
bet if you have many user applications
● The default behavior, read-only “swapping” 

between Flash and DRAM is beneficial
– More programs with less DRAM – load from Flash 

into DRAM when needed
– Slows down when overloaded, but graceful 

degradation
– Only possible with virtual memory

● Execute in place may not be a good trade-off
– A lot more flash space for a little less DRAM space



  

Problems with Shared Library
Shifting focus into user space
● Lower code density of .so

– Function need to be ABI-compliant
– Position independent code
– Functions cannot be inlined
– Limit inter-function compiler optimizations

● Need per-instance memory pages for dynamic 
linking

– Dynamic linking tables (GOT, PLT)
– Global variables
– Need to watch this overhead: If 10 processes in the 

system and each of them is linked to 10 shared 
libraries, ~400k of free memory is consumed by 
dynamic linking



  

Move Away From Shared Library
● Tweak: Do not link unnecessary shared 

libraries
– Check your linker options

● Better Tweak: Use client-server model in 
place of shared libraries when possible

– From: m application processes linked to n shared 
libraries

– To: Create a server process with n statically linked 
libraries. Use IPC mechanisms to connect m 
application processes to the server process  



  

Toolchain Considerations
● Plain old malloc allocator

– Two level memory allocation for user applications: 
malloc allocator on top of kernel page allocation

● For performance reasons, malloc does not return all the 
free pages to kernel, it is done only when free memory 
exceed a threshold

– These are dirty pages so kernel has no way to reuse it in a 
swapless system

– Tweak: We can adjust parameters to make malloc 
allocator return unused pages to kernel more 
eagerly

● libc: Call mallocopt function with M_TRIM_THRESHOLD 
as parameter

● uClibc: No mallocopt function, change 
DEFAULT_TRIM_THRESHOLD at compile time

– Default is 256K, too big for quite a few systems



  

Tools
● Some proc entries

– Ignore free memory shown in /proc/meminfo
– echo 3 > /proc/sys/vm/drop_caches followed 

/proc/meminfo is better
– /proc/<pid>/maps for user processes

● Tools from Matt Mackall
– /proc/kpagemap, /proc/<pid>/pagemap: Page walk 

tool
– /proc/<pid>/smaps

● Aware of shared memory pages 
● “Proportional Set Size (PSS)”: Divide shared pages by 

number of process sharing and attribute to each process
– Matt Mackall's talks at ELC 2007, 2008, 2009

● http://elinux.org/ELC_2009_Presentations
● http://lwn.net/Articles/230975

http://elinux.org/ELC_2009_Presentations
http://lwn.net/Articles/230975


  

Tools
● My (experimental) metric: Kernel Mobile 

Memory
– A number that simple math actually works

● Kernel Mobile Memory = 5000k → kmalloc 100k → 
Kernel Mobile Memory = 4900k

– Kernel Mobile Memory = # of memory pages 
that are free, or can be recycled by the kernel 
at anytime. For DRAM + Flash swapless 
system

● Include: user application code segments (file backed 
pages that are not dirty), other cached files, etc.

● Exclude: all dirty pages, memory consumed by 
kmalloc, user space malloc, etc.



  

Tools

– How to measure
● Non-intrusive: Should be able to measure by walk 

through page table and get statistics
● Intrusive: Let kernel memory reclaim mechanisms until it 

cannot find any free pages (super version of 
drop_caches), then do /proc/meminfo.

– I wrote some code for older kernels, but it is not production-
quality and it did not get updated for newer kernels

– You can try to reuse power management code that puts the 
system into hibernation (pm_suspend_disk), as that part of 
kernel code does very similar things

– Use
● If it is very low in absolute terms (for example, <1.5M), 

the system is about to lock up
● If it is small compared to the working set (Don't have a 

way to measure:)), the system runs slowly
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Don't Forget the Basics
● Squash + LZMA is usually an efficient read-

only root memory system
● Remove unused symbols in shared libraries

– Debian mklibs script
● http://packages.debian.org/unstable/devel/mklibs

● Turn off unused kernel options
● Check all GCC options for your platform

– Choose an efficient ABI if available
● These are low-level optimizations. Don't 

forget algorithm and data structure 
optimizations 

– O(..) level improvements
– Use arrays instead of linked list, trees when possible 

to avoid overheads

http://packages.debian.org/unstable/devel/mklibs


  

Conclusion
● This may be tedious work, but if we avoid 

eyesight fixation or tunnel vision, it can be 
interesting too

– Memory consumed by kmalloc is important, but not 
everything. Application layer malloc, shared libraries 
need to be considered

– Size is not everything. Fragmentation and low-
memory CPU utilization are also important

– It is interesting to find out that client-server model 
can be preferred for memory reasons
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