
Engaging Device Trees
Embedded Linux Conference 2014

Geert Uytterhoeven
geert@linux-m68k.org

Glider bvba

Tuesday, April 29

c© Copyright 2014 Glider bvba



About Me (and Linux)

Hobbyist
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1997 Linux/PPC on CHRP
1997 FBDev

Sony

2006 Linux on PS3/Cell at Sony

Glider bvba

2013 Renesas ARM-based SoCs



Introduction

I Where are Device Trees coming from?
I What problems do Device Trees solve?
I What challenges do Device Trees pose?
I Best Practices to improve bindings between IP cores in

SoCs, devices on boards, and drivers.
I Make it easier to support faster a vast variety of SoCs,

boards, and peripherals, also for production (LTSI) kernels.



History of Device Trees in Linux
Open Firmware

1991 Sun OpenBoot V2.x, SPARCstation 2
1994 IEEE 1275-1994
1997 My first experience with DT on PPC:

Real Open Firmware on CHRP LongTrail
I Forth
I Used on Apple PowerMac and IBM machines
I PCI devices represented in DT, generated by

firmware
I Nodes for ISAPnP under pci/isa/
I DT not much used by Linux yet



History of Device Trees in Linux
Flattened Device Tree

2005 PPC starts switching to FDT
2006 First in-kernel DTS: mpc8641_hpcn.dts
2007 PS3: mandatory, but rudimentary DTS:

I Dummy memory
I 1 CPU with 2 threads
I CPU cache
I Dummy clock frequencies



/dts-v1/;
/ {

model = "SonyPS3";
compatible = "sony,ps3";
#size-cells = <2>;
#address-cells = <2>;
chosen { };
memory {

device_type = "memory";
reg = <0x00000000 0x00000000 0x00000000 0x00000000>;

};
cpus {

#size-cells = <0>;
#address-cells = <1>;
cpu@0 {

device_type = "cpu";
reg = <0x00000000>;
ibm,ppc-interrupt-server#s = <0x0 0x1>;
clock-frequency = <0>;
timebase-frequency = <0>;
i-cache-size = <32768>;
d-cache-size = <32768>;
i-cache-line-size = <128>;
d-cache-line-size = <128>;

};
};

};



History of Device Trees in Linux
World Domination

2007 Common implementation for PPC and SPARC
drivers/of

2009 New Linux architectures/platforms use DT:
microblaze

2011 ARM switches to DT
2014 DT used by 12 out of 28 architectures:

ppc, sparc, microblaze, mips, x86, arm, openrisc,
c6x, arm64, metag, xtensa, arc
(+ nios2)



What Are Device Trees?

What?

I Description of the hardware
I Relationships between various hardware components
I OS-agnostic

Why?

I Why do we need it?
I What problems does it solve?
I Other solutions?
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End of 20th Century

State of hardware

I Mostly completed moving from hardwired logic blocks to
discoverable buses like PCI, USB, . . .

I IsaPNP

State of Linux

I No device framework, no platform devices
I Mostly single-platform kernels

(excl. m68k, PowerPC, . . . )
I PCI discovery
I Still some ISA probing

non-x86: don’t compile in the driver to avoid crashes
I Live CDs, e.g. Knoppix
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SoC + Board

Embedded Device

I SoC + board peripherals

Return of the Non-Discoverable Buses

I Lots of hardwired logic on-chip
I Peripherals on simple buses: spi, i2c, i2s, 1-wire, SDIO, . . .
I Buses behind other buses
I Power regulators and power domains
I Clock generators and clock domains
I Multiple interrupt controllers
I Pinctrl and pinmux
I Complex topologies and dependencies
I Buses with support for discovery for expansion



SoC + Board
Hardware Description

Linux kernel needs to know which hardware it’s running on

Need good description of the hardware

1. (A)TAGS: m68k, ARM
ABI boot loader / kernel

2. Board code with platform devices
Code, complex, boring

3. DT
Better separation of code and data

4. ACPI
Hmmm . . .



Why Device Trees?
Multi-Platform

Single-Platform Kernels

I Differentiate by kernel config
I N devices: N configs, N kernels

Multi-Platform Kernels

I Differentiate by DT
I N devices: 1 config, 1 kernel, N DTs
I Easier to deploy, convenient for Distributions
I Compile-coverage



Why Device Trees?
Evolution of the number of ARM defconfig files
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Why Device Trees?
Hardware/Software Reuse

SoCs

I Many have the same IP cores, LEGO-like building blocks
I Just need different DTs!

Boards

I The same SoCs may be used on multiple boards
I Differences are in:

I Which IP blocks are enabled
I Child devices

typically on non/semi-discoverable buses like spi and i2c
I Clocks, regulators, pinctrl, . . .



IP Core Versioning and Compatibility
Discrete ICs

Before SoCs:
I Hardware block is IC
I Unique part number
I Optional name, PCI ID
I Example: DECchip 21040, Tulip



IP Core Versioning and Compatibility
System on Chip

I No part numbers for hardware blocks ("IP cores")
I Which IP cores? Abstract names? Which version?
I Use SoC part number? SoC family name?
I Examples:

I "renesas,scifa"
I "renesas,ether-r8a7791"
I "renesas,gpio-rcar"
I "renesas,rcar_sound-gen2"

I Softcores:
I HDL sources for IP core available,
I OpenRISC: "opencores,<name>-rtlsvn<version>"?



IP Core Versioning and Compatibility

2 versions of the IP core are definitely different

I How to represent differences?

2 versions of the IP core are different, but the current
Linux driver doesn’t care

I Still need to differentiate, future driver versions may use
the differences

2 versions of the IP core are the same (same version in 2
SoCs)

I Are they really the same?
I What if they turn out not to be the same later?



Compatible
Generic names vs. specific names

Initially

I DTS: compatible = "vendor,device-soc<type>",
"vendor,device"

I driver: match "vendor,device"

New compatible SoC

I DTS: compatible =
"vendor,device-soc<newtype>",
"vendor,device"

I driver: no changes needed



Compatible
Generic names vs. specific names

New incompatible SoC

I DTS: compatible =
"vendor,device-soc<newtype>"

I old driver:
match "vendor,device" and
"vendor,device-soc<type>"

I new driver or enhanced old driver:
match "vendor,device-soc<newtype>"



Stable ABI Nonsense

No stable ABI for in-kernel code

I Module ABI
I Platform data ABI
I Out-of-tree code is second (if any at all) class citizen



Stable ABI Sense

User space ABI is stable

I Small
I Well-thought abstractions (syscalls, /sys (hmm), . . . )

DT API is stable

I Big, growing, a few orders of magnitudes more changes
I Zillions of different hardware devices
I Complex for complex hardware
I Lots of review to do

(devicetree@vger.kernel.org is a more boring
firehose than lkml ;-)



Stable DT ABI
Backward/Forward Compatibility, Synchronization

I New optional properties
I E.g. "spi-rx-bus-width": Dual/Quad SPI
I SPI core rejects slave if feature not supported by master
I New DT will not work with old kernel

I Move from device-specific to generic subsystem properties

I renesas,clock-indices and clock-indices
I Update

I Bindings
I Subsystem code (incl. backward compatibility)
I DTS

I What with future external DT repo? How to synchronize?



Complex Topologies

Examples
I SoC module has to change function depending on the

state of a GPIO
I USB host/gadget detection on Lager, via platform data

callback in legacy code.

I Graphics
I Audio



Where does the DTB come from?

I DTB is created from *.dts and *.dtsi by dtc
I DTB is passed from bootloader

I Where is it stored?
I How is it updated?
I Backward compatibility: see Stable DT API

I Alternatives:
I Appended to zImage
I Included in vmlinux
I Always up-to-date



Dynamic DT

Hotplug

Device Tree Overlays (WIP)
I Dynamically altering the kernel’s live Device Tree
I E.g. BeagleBone (Black) cape plug-in boards

FPGA Platforms

I No fixed DT, hardware may change
I Derive from/store in HDL?



Binding Documentation

I Submit early vs. together with driver patch
I CC devicetree@vger.kernel.org for review
I Use *-names if there can be more than one:

I Registers: reg and reg-names
I Interrupts: interrupts and interrupt-names
I Clocks: clocks and clock-names
I Example:

interrupts = <0 238 IRQ_TYPE_LEVEL_HIGH>,
<0 239 IRQ_TYPE_LEVEL_HIGH>,
<0 240 IRQ_TYPE_LEVEL_HIGH>;

interrupt-names = "error", "rx", "tx";

I List all compatible names in bindings, even if the driver
doesn’t match against them yet, so checkpatch can
validate DTSes against them

I Documentation/devicetree/bindings/vendor-prefixes.txt
I

Documentation/devicetree/bindings/i2c/trivial-devices.txt



Bindings
KISS

I Simple bindings:
I compatible = ...
I + a few properties

I Avoid adding more properties to differentiate
I You may be/guess wrong about compatibility
I What if you discover an incompatibility later?

→ Use SoC-specific compatible properties from the start

I think you can do at least some of this without
committing to bindings all that early. Keep in mind that
bindings can be amended over time, so if you start a
driver with a trivial binding you can add properties over
time as needed. — Olof Johansson



SoC versus Board
SoC

SoC-specific devices
I arch/<arch>/boot/dts/<soc>.dtsi

I All possible devices, status "disabled"

I Example:

sata0: sata@ee300000 {
compatible = "renesas,sata-r8a7791";
reg = <0 0xee300000 0 0x2000>;
interrupts = <0 105 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&mstp8_clks R8A7791_CLK_SATA0>;
status = "disabled";

};



SoC versus Board
Board

Board-specific devices and configuration
I arch/<arch>/boot/dts/<soc>-<board>.dts

I Include SoC-specific dtsi for SoC-specific devices
I Enable devices: status "ok"

I Child devices for e.g. spi and i2c
I External clocks, pinctrl, aliases, . . .
I Example:

#include "r8a7791.dtsi"

&i2c6 {
status = "okay";
clock-frequency = <100000>;

};



Includes and Macro Definitions

Dtc now uses cpp
I Prefer #include "file.dtsi" over
/include/ "file.dtsi"

I Cpp macros in include/dt-bindings/

I Can be included as #include <dt-bindings/....h>
by DTS (and code)

I Useful for e.g. clock indices, or other boring definitions
I Example: include/dt-bindings/gpio/gpio.h

#define GPIO_ACTIVE_HIGH 0
#define GPIO_ACTIVE_LOW 1

I Actual values are part of the DT ABI!



Platform devices and DT compatility
Why?

Sometimes you still want to use platform devices:
I Drivers for IP cores used on legacy platforms
I Platform devices in board code for prototyping
I Sharing with legacy platforms

Think about the upgrade path . . . to DT!



Platform devices and DT compatility
Differences

Platform Devices

I Match by Platform Device Name,
I Platform Device Resources: IO, MMIO, IRQ,
I Platform Data: C-struct, can be anything!

DT

I Match by compatible-property,
I reg-properties for IO or MMIO,
I interrupts-properties,
I clocks-properties,
I pinctrl-properties,
I Platform, subsystem, bus, and device-specific properties



Platform devices and DT compatility
Platform Data

Avoid platform data
I Esp. callback functions
I "translate" other fields to properties
I Example:

struct rspi_plat_data {
unsigned int dma_tx_id;
unsigned int dma_rx_id;
unsigned dma_width_16bit:1;

+ u16 num_chipselect;
+ u8 data_width; /* Data reg access width */
+ unsigned txmode:1; /* TX only mode */
+ unsigned spcr2:1; /* Set parity register */
};



Platform devices and DT compatility
Matching

Use multiple platform device names to differentiate if needed
I Then of_device_id.data and
platform_device_id.driver_data can contain a
pointer to parameters, if needed

I Example:

static struct platform_device_id spi_driver_ids[] = {
{ "rspi", (kernel_ulong_t)&rspi_ops },
{ "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
{ "qspi", (kernel_ulong_t)&qspi_ops },
{},

};
static const struct of_device_id rspi_of_match[] = {
{ .compatible = "renesas,rspi", .data = &rspi_ops },
{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
{ .compatible = "renesas,qspi", .data = &qspi_ops },
{},

};



Platform devices and DT compatility
Resources

Use resources: These are automatically compatible
I (named) I/O and MMIO ranges,
I (named) interrupts,
I Named resources allow support for optional/different sets,

e.g. separate interrupts vs. one multiplexed interrupt.
I Example:

static const struct resource rspi0_resources[] {
DEFINE_RES_MEM(0xe800c800, 0x24),
DEFINE_RES_IRQ_NAMED(270, "error"),
DEFINE_RES_IRQ_NAMED(271, "rx"),
DEFINE_RES_IRQ_NAMED(272, "tx"),

};
int irq = platform_get_irq_byname(pdev, "rx");



Platform devices and DT compatility
Clocks

Use NULL name match:

struct clk *clk_get(struct device *dev,
const char *con_id);

struct clk *clk = clk_get(&pdev->dev, NULL);

Clock name comes from device name:
I Platform device name
I DT node name (DT without Common Clock Framework)

E.g. e61f0000.thermal
I DT clock name (DT with Common Clock Framework), as

specified by clocks-property



Long Term Support Initiative

I http://ltsi.linuxfoundation.org

I LTSI-3.10
I Backporting drivers / SoC / board support
I DT Multi-Platform
I DT Compatibility

I Submit bindings early
I Avoid long term support of potentially premature DT

bindings

http://ltsi.linuxfoundation.org


Questions?

I When will m68k migrate to DT?
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