
Engaging Device Trees
Embedded Linux Conference 2014

Geert Uytterhoeven
geert@linux-m68k.org

Glider bvba

Tuesday, April 29

c© Copyright 2014 Glider bvba

About Me (and Linux)

Hobbyist

1994 Linux/m68k on Amiga
1997 Linux/PPC on CHRP
1997 FBDev

Sony

2006 Linux on PS3/Cell at Sony

Glider bvba

2013 Renesas ARM-based SoCs

Introduction

I Where are Device Trees coming from?
I What problems do Device Trees solve?
I What challenges do Device Trees pose?
I Best Practices to improve bindings between IP cores in

SoCs, devices on boards, and drivers.
I Make it easier to support faster a vast variety of SoCs,

boards, and peripherals, also for production (LTSI) kernels.

History of Device Trees in Linux
Open Firmware

1991 Sun OpenBoot V2.x, SPARCstation 2
1994 IEEE 1275-1994
1997 My first experience with DT on PPC:

Real Open Firmware on CHRP LongTrail
I Forth
I Used on Apple PowerMac and IBM machines
I PCI devices represented in DT, generated by

firmware
I Nodes for ISAPnP under pci/isa/
I DT not much used by Linux yet

History of Device Trees in Linux
Flattened Device Tree

2005 PPC starts switching to FDT
2006 First in-kernel DTS: mpc8641_hpcn.dts
2007 PS3: mandatory, but rudimentary DTS:

I Dummy memory
I 1 CPU with 2 threads
I CPU cache
I Dummy clock frequencies

/dts-v1/;
/ {

model = "SonyPS3";
compatible = "sony,ps3";
#size-cells = <2>;
#address-cells = <2>;
chosen { };
memory {

device_type = "memory";
reg = <0x00000000 0x00000000 0x00000000 0x00000000>;

};
cpus {

#size-cells = <0>;
#address-cells = <1>;
cpu@0 {

device_type = "cpu";
reg = <0x00000000>;
ibm,ppc-interrupt-server#s = <0x0 0x1>;
clock-frequency = <0>;
timebase-frequency = <0>;
i-cache-size = <32768>;
d-cache-size = <32768>;
i-cache-line-size = <128>;
d-cache-line-size = <128>;

};
};

};

History of Device Trees in Linux
World Domination

2007 Common implementation for PPC and SPARC
drivers/of

2009 New Linux architectures/platforms use DT:
microblaze

2011 ARM switches to DT
2014 DT used by 12 out of 28 architectures:

ppc, sparc, microblaze, mips, x86, arm, openrisc,
c6x, arm64, metag, xtensa, arc
(+ nios2)

What Are Device Trees?

What?

I Description of the hardware
I Relationships between various hardware components
I OS-agnostic

Why?

I Why do we need it?
I What problems does it solve?
I Other solutions?

Simple Computer

BUS

data/address/irq/clock/power
CPU RAM

I/O I/O I/O

Display StorageKeyboard

I Simple bus
I Expansion cards?

RAMCPU

PCI BUS

CPU BUS

BRIDGE

PCI

HOST

I/OI/O HOST

USB

CTRL

Storage Network USB

Discovery

Discovery

End of 20th Century

State of hardware

I Mostly completed moving from hardwired logic blocks to
discoverable buses like PCI, USB, . . .

I IsaPNP

State of Linux

I No device framework, no platform devices
I Mostly single-platform kernels

(excl. m68k, PowerPC, . . .)
I PCI discovery
I Still some ISA probing

non-x86: don’t compile in the driver to avoid crashes
I Live CDs, e.g. Knoppix

RAMCPU

I/O I/O I/O

Core

Core

CPU

I/O I/O I/O I/O

BRIDGE

GPIO
PIN

CTRL

PINMUX

PINMUX

CLKPOWER

SoC + Board

Embedded Device

I SoC + board peripherals

Return of the Non-Discoverable Buses

I Lots of hardwired logic on-chip
I Peripherals on simple buses: spi, i2c, i2s, 1-wire, SDIO, . . .
I Buses behind other buses
I Power regulators and power domains
I Clock generators and clock domains
I Multiple interrupt controllers
I Pinctrl and pinmux
I Complex topologies and dependencies
I Buses with support for discovery for expansion

SoC + Board
Hardware Description

Linux kernel needs to know which hardware it’s running on

Need good description of the hardware

1. (A)TAGS: m68k, ARM
ABI boot loader / kernel

2. Board code with platform devices
Code, complex, boring

3. DT
Better separation of code and data

4. ACPI
Hmmm . . .

Why Device Trees?
Multi-Platform

Single-Platform Kernels

I Differentiate by kernel config
I N devices: N configs, N kernels

Multi-Platform Kernels

I Differentiate by DT
I N devices: 1 config, 1 kernel, N DTs
I Easier to deploy, convenient for Distributions
I Compile-coverage

Why Device Trees?
Evolution of the number of ARM defconfig files

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

v2.6.11

v2.6.12

v2.6.13

v2.6.14

v2.6.15

v2.6.16

v2.6.17

v2.6.18

v2.6.19

v2.6.20

v2.6.21

v2.6.22

v2.6.23

v2.6.24

v2.6.25

v2.6.26

v2.6.27

v2.6.28

v2.6.29

v2.6.30

v2.6.31

v2.6.32

v2.6.33

v2.6.34

v2.6.35

v2.6.36

v2.6.37

v2.6.38

v2.6.39

v3.0
v3.1

v3.2
v3.3

v3.4
v3.5

v3.6
v3.7

v3.8
v3.9

v3.10

v3.11

v3.12

v3.13

v3.14

Why Device Trees?
Hardware/Software Reuse

SoCs

I Many have the same IP cores, LEGO-like building blocks
I Just need different DTs!

Boards

I The same SoCs may be used on multiple boards
I Differences are in:

I Which IP blocks are enabled
I Child devices

typically on non/semi-discoverable buses like spi and i2c
I Clocks, regulators, pinctrl, . . .

IP Core Versioning and Compatibility
Discrete ICs

Before SoCs:
I Hardware block is IC
I Unique part number
I Optional name, PCI ID
I Example: DECchip 21040, Tulip

IP Core Versioning and Compatibility
System on Chip

I No part numbers for hardware blocks ("IP cores")
I Which IP cores? Abstract names? Which version?
I Use SoC part number? SoC family name?
I Examples:

I "renesas,scifa"
I "renesas,ether-r8a7791"
I "renesas,gpio-rcar"
I "renesas,rcar_sound-gen2"

I Softcores:
I HDL sources for IP core available,
I OpenRISC: "opencores,<name>-rtlsvn<version>"?

IP Core Versioning and Compatibility

2 versions of the IP core are definitely different

I How to represent differences?

2 versions of the IP core are different, but the current
Linux driver doesn’t care

I Still need to differentiate, future driver versions may use
the differences

2 versions of the IP core are the same (same version in 2
SoCs)

I Are they really the same?
I What if they turn out not to be the same later?

Compatible
Generic names vs. specific names

Initially

I DTS: compatible = "vendor,device-soc<type>",
"vendor,device"

I driver: match "vendor,device"

New compatible SoC

I DTS: compatible =
"vendor,device-soc<newtype>",
"vendor,device"

I driver: no changes needed

Compatible
Generic names vs. specific names

New incompatible SoC

I DTS: compatible =
"vendor,device-soc<newtype>"

I old driver:
match "vendor,device" and
"vendor,device-soc<type>"

I new driver or enhanced old driver:
match "vendor,device-soc<newtype>"

Stable ABI Nonsense

No stable ABI for in-kernel code

I Module ABI
I Platform data ABI
I Out-of-tree code is second (if any at all) class citizen

Stable ABI Sense

User space ABI is stable

I Small
I Well-thought abstractions (syscalls, /sys (hmm), . . .)

DT API is stable

I Big, growing, a few orders of magnitudes more changes
I Zillions of different hardware devices
I Complex for complex hardware
I Lots of review to do

(devicetree@vger.kernel.org is a more boring
firehose than lkml ;-)

Stable DT ABI
Backward/Forward Compatibility, Synchronization

I New optional properties
I E.g. "spi-rx-bus-width": Dual/Quad SPI
I SPI core rejects slave if feature not supported by master
I New DT will not work with old kernel

I Move from device-specific to generic subsystem properties

I renesas,clock-indices and clock-indices
I Update

I Bindings
I Subsystem code (incl. backward compatibility)
I DTS

I What with future external DT repo? How to synchronize?

Complex Topologies

Examples
I SoC module has to change function depending on the

state of a GPIO
I USB host/gadget detection on Lager, via platform data

callback in legacy code.

I Graphics
I Audio

Where does the DTB come from?

I DTB is created from *.dts and *.dtsi by dtc
I DTB is passed from bootloader

I Where is it stored?
I How is it updated?
I Backward compatibility: see Stable DT API

I Alternatives:
I Appended to zImage
I Included in vmlinux
I Always up-to-date

Dynamic DT

Hotplug

Device Tree Overlays (WIP)
I Dynamically altering the kernel’s live Device Tree
I E.g. BeagleBone (Black) cape plug-in boards

FPGA Platforms

I No fixed DT, hardware may change
I Derive from/store in HDL?

Binding Documentation

I Submit early vs. together with driver patch
I CC devicetree@vger.kernel.org for review
I Use *-names if there can be more than one:

I Registers: reg and reg-names
I Interrupts: interrupts and interrupt-names
I Clocks: clocks and clock-names
I Example:

interrupts = <0 238 IRQ_TYPE_LEVEL_HIGH>,
<0 239 IRQ_TYPE_LEVEL_HIGH>,
<0 240 IRQ_TYPE_LEVEL_HIGH>;

interrupt-names = "error", "rx", "tx";

I List all compatible names in bindings, even if the driver
doesn’t match against them yet, so checkpatch can
validate DTSes against them

I Documentation/devicetree/bindings/vendor-prefixes.txt
I

Documentation/devicetree/bindings/i2c/trivial-devices.txt

Bindings
KISS

I Simple bindings:
I compatible = ...
I + a few properties

I Avoid adding more properties to differentiate
I You may be/guess wrong about compatibility
I What if you discover an incompatibility later?

→ Use SoC-specific compatible properties from the start

I think you can do at least some of this without
committing to bindings all that early. Keep in mind that
bindings can be amended over time, so if you start a
driver with a trivial binding you can add properties over
time as needed. — Olof Johansson

SoC versus Board
SoC

SoC-specific devices
I arch/<arch>/boot/dts/<soc>.dtsi

I All possible devices, status "disabled"

I Example:

sata0: sata@ee300000 {
compatible = "renesas,sata-r8a7791";
reg = <0 0xee300000 0 0x2000>;
interrupts = <0 105 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&mstp8_clks R8A7791_CLK_SATA0>;
status = "disabled";

};

SoC versus Board
Board

Board-specific devices and configuration
I arch/<arch>/boot/dts/<soc>-<board>.dts

I Include SoC-specific dtsi for SoC-specific devices
I Enable devices: status "ok"

I Child devices for e.g. spi and i2c
I External clocks, pinctrl, aliases, . . .
I Example:

#include "r8a7791.dtsi"

&i2c6 {
status = "okay";
clock-frequency = <100000>;

};

Includes and Macro Definitions

Dtc now uses cpp
I Prefer #include "file.dtsi" over
/include/ "file.dtsi"

I Cpp macros in include/dt-bindings/

I Can be included as #include <dt-bindings/....h>
by DTS (and code)

I Useful for e.g. clock indices, or other boring definitions
I Example: include/dt-bindings/gpio/gpio.h

#define GPIO_ACTIVE_HIGH 0
#define GPIO_ACTIVE_LOW 1

I Actual values are part of the DT ABI!

Platform devices and DT compatility
Why?

Sometimes you still want to use platform devices:
I Drivers for IP cores used on legacy platforms
I Platform devices in board code for prototyping
I Sharing with legacy platforms

Think about the upgrade path . . . to DT!

Platform devices and DT compatility
Differences

Platform Devices

I Match by Platform Device Name,
I Platform Device Resources: IO, MMIO, IRQ,
I Platform Data: C-struct, can be anything!

DT

I Match by compatible-property,
I reg-properties for IO or MMIO,
I interrupts-properties,
I clocks-properties,
I pinctrl-properties,
I Platform, subsystem, bus, and device-specific properties

Platform devices and DT compatility
Platform Data

Avoid platform data
I Esp. callback functions
I "translate" other fields to properties
I Example:

struct rspi_plat_data {
unsigned int dma_tx_id;
unsigned int dma_rx_id;
unsigned dma_width_16bit:1;

+ u16 num_chipselect;
+ u8 data_width; /* Data reg access width */
+ unsigned txmode:1; /* TX only mode */
+ unsigned spcr2:1; /* Set parity register */
};

Platform devices and DT compatility
Matching

Use multiple platform device names to differentiate if needed
I Then of_device_id.data and
platform_device_id.driver_data can contain a
pointer to parameters, if needed

I Example:

static struct platform_device_id spi_driver_ids[] = {
{ "rspi", (kernel_ulong_t)&rspi_ops },
{ "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
{ "qspi", (kernel_ulong_t)&qspi_ops },
{},

};
static const struct of_device_id rspi_of_match[] = {
{ .compatible = "renesas,rspi", .data = &rspi_ops },
{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
{ .compatible = "renesas,qspi", .data = &qspi_ops },
{},

};

Platform devices and DT compatility
Resources

Use resources: These are automatically compatible
I (named) I/O and MMIO ranges,
I (named) interrupts,
I Named resources allow support for optional/different sets,

e.g. separate interrupts vs. one multiplexed interrupt.
I Example:

static const struct resource rspi0_resources[] {
DEFINE_RES_MEM(0xe800c800, 0x24),
DEFINE_RES_IRQ_NAMED(270, "error"),
DEFINE_RES_IRQ_NAMED(271, "rx"),
DEFINE_RES_IRQ_NAMED(272, "tx"),

};
int irq = platform_get_irq_byname(pdev, "rx");

Platform devices and DT compatility
Clocks

Use NULL name match:

struct clk *clk_get(struct device *dev,
const char *con_id);

struct clk *clk = clk_get(&pdev->dev, NULL);

Clock name comes from device name:
I Platform device name
I DT node name (DT without Common Clock Framework)

E.g. e61f0000.thermal
I DT clock name (DT with Common Clock Framework), as

specified by clocks-property

Long Term Support Initiative

I http://ltsi.linuxfoundation.org

I LTSI-3.10
I Backporting drivers / SoC / board support
I DT Multi-Platform
I DT Compatibility

I Submit bindings early
I Avoid long term support of potentially premature DT

bindings

http://ltsi.linuxfoundation.org

Questions?

I When will m68k migrate to DT?

Thanks & Acknowledgements

I Renesas Electronics Corporation, for contracting me to
do Linux kernel work,

I The Linux Foundation, for organizing this conference and
giving me the opportunity to present here,

I The Renesas Linux Kernel Team, for DT insights and
discussions,

I The Linux Kernel Community, for having so much fun
working together towards a common goal.

	About Me
	Introduction
	History
	Device Trees
	Challenges
	Best Practices
	LTSI
	Questions
	Thanks

