
OpenRISC Talk
Stafford Horne

What is OpenRISC?

FPGA, IP cores

OpenCores

FuseSOC

FOSSi

What is OpenRISC?
Officially OpenRISC 1000 is an open
source RISC architecture:

● 32-bit / 64-bit
● 32 General Purpose Registers
● Delay Slot
● Instruction & Data MMU
● Linux support since 2010

○ 50mhz, 5 secs

Read More: https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.1-rev0.pdf

https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.1-rev0.pdf

OpenRISC implementations
No 64-bit implementations

OR1200 - https://github.com/openrisc/or1200 - original (~2000)

mor1kx - https://github.com/openrisc/mor1kx - recommended (~2012)

❖ Modular
❖ Cappuccino - 5 stage, caching + mmu
❖ Espresso - 2 stage, no caching
❖ Pronto Espresso - 3 stage no delay slot, no caching

https://github.com/openrisc/or1200
https://github.com/openrisc/mor1kx

OpenRISC modular

OpenRISC assembly

OpenRISC & wishbone bus
OpenRISC / opencores

● Standard SOC interconnect
● Supports common topologies

○ Master - Slave
○ Shared bus (multiple master)
○ Crossbar

● Different pipeline burst options

Read More: https://opencores.org/cdn/downloads/wbspec_b3.pdf

https://opencores.org/cdn/downloads/wbspec_b3.pdf

OpenRISC vs Other soft codes

Open MMU LInux Upstream Silicon

OpenRISC 32-bit Limited

RISC-V Kinda 64-bit Soon Multi

Nios2 32-bit

Microblaze 32-bit

FuseSOC
Software world

● GCC, make
● Classpath, LD_LIBRARY_PATH
● import, include

Hardware world

● Vendor proprietary

FuseSOC

Xilinx/Altera Bitstream

CPU core

SDRam
Ctrl core

Audio core

USB core

A brief history
2000 - OpenRISC

2001 - opencores.org

2005 - OpenRISC founders create Beyond Semi

2007 - opencores.org changes hands ORSoC AB

2015 - FOSSi create fossi-foundation.org

- librecores.org
- freecores.github.io
- openrisc.io

FOSSi
Help support and promote free and open source silicon

● Frontend Design - ip, simulation, analysis
● Backend Design - cell libraries
● Fabrication - cheaper processes
● Licencing
● Conferences - orconf

Getting Started

2015
I got back into fpga with a simple sound project. Designed some simple analog
circuits and tied them together with a De0 Nano.

Microphone Pre Amp
LM741 opamp To Speaker

MCP4922 DAC

Project
● Developed all by hand
● Spent many hours with an

ISSI datasheet to learn how to
write the sdram controller

Project - next steps
● After that I wanted to do more but

○ Shareable IP

○ Better development lifecycle (not locked
into quartus)

○ Run linux on the de0 nano

http://www.youtube.com/watch?v=7Pq56ssI-wg

Toolchain GCC

or1k-gcc

● 5.3.0 released
● 5.4.0 (needed to build or1k-linux-musl toolchain) in git and testing

Upstream status - Pending

● 7.0.0 - in development (2016 Apr)
● 6.2.1 - latest 6 release (2016 Aug)
● 5.4.1 - latest 5 release (2016 Jun)

Toolchain Newlib (libc)
newlib

● 2.3.0 (Mar 2016)
● 2.4.0 (in github)

Upstream Status

● (~20 patches pending)
● 2.4.0 (Mar 2016)

Toolchain Binutils/GDB
● Release 7.11 (upstream at 7.12)
● 2016 Work

○ Testing Effort (Dejagnu)
○ Native Simulator Support (cgen)

● Upstream status (patches sent)
○ Working on fixups right now

■ Remove doxygen
■ Code style
■ ChangeLog merge (since 2008)
■ Implement pseudo registers

Toolchain Binutils/GDB - testing
$ export DEJAGNU=../../or1k-src/boards/or1k-elf-sim.exp

$ make check

of expected passes 18667
of unexpected failures 404 (450)
of expected failures 28
of known failures 52
of unresolved testcases 34
of untested testcases 163
of unsupported tests 263

Toolchain Binutils/GDB - sim
struct data {
 char * str;
};

struct data gdata = {
 .str = "global"
};

char * foo(struct data tdata) {
 return tdata.str;
}

int main() {
 struct data tdata;
 tdata.str = "hello";
 foo(tdata);
 return 0;
}

$ or1k-elf-gcc -g -o test test.c

$ or1k-elf-gdb test

(gdb) target sim

(gdb) load

(gdb) break main

(gdb) run

(gdb) print foo(gdata)

$1 = 0x3bd0 “global”

Toolchain Binutils/GDB - dummy call
Supporting OpenRISC abi:

● Structs and unions be passed as pointers
● Variadic arguments are passed on the stack

Linux
● No upstream patches since Feb 2012
● My work so far

○ memcpy - decrease boot time from 7 to 5
seconds

○ bootmem to memblock conversion

● Upstream effort
○ Prioritized and submitted patches for

review
○ Maintaining commit queue
○ Patches in linux-next
○ Stafan for Me got pgp key signature

Memcpy Routine Cycs

Word Copies + Loop Unrolls
+ Non Aligned

1882

Word Copies + Loop Unrolls 1887

Word Copies 2441

Byte Copies + Loop Unrolls 6467

Byte Copies 7600

Project
● Use openrisc soc with wishbone bus
● Reuse as much as possible
● re-write interface modules to work

with wishbone bus
● Run Linux

○ DMA sound card driver
○ Controllable via UART

On the web
github.com/openrisc - projects hosted here

#openrisc on freenode (I’m shorne)

openrisc@lists.librecores.org

openrisc.io - work in progress, moving from (opencores.org)

● Downloads
● Tutorials

freecores.github.io - Opencores svn cores moved to github

Questions
?

