
INTRODUCTION

The on-board computers of a spacecraft handle telecommands sent 
by the ground, provide telemetry to the ground, process on-board 
data, and control the spacecraft platform and payloads. A space-
craft may have one or several on-board computers that handle dif-
ferent tasks.

On-board software often makes use of specialized real-time 
operating systems and is usually tailored to the needs of each mis-
sion, leading to software projects spanning several years. Addition-
ally, often only parts of the developed software can be used in fol-
lowing missions, demanding a new long software project for the 
new mission—even when much of the functionality may be very 
similar from one mission to another.

One method to facilitate software reuse is to use existing off-
the-shelf software modules to accomplish many of the mission 
tasks while only writing a small portion of mission-specific appli-
cation code. One way to achieve this, used especially by universi-
ties and “new space” companies, has been to use embedded Linux 
[1]. However, only some of these projects have published how they 
built their Linux-based on-board software systems. This article de-
scribes the development, design, initial flight results, and lessons 
learned of the Linux-based on-board computer (OBC) of Aalto-1.

BACKGROUND

EMBEDDED LINUX

Linux is a general-purpose operating system used in embedded 
systems because of quality and availability of code, wide hardware 
support, implementations of communication protocols and appli-
cation programming interfaces, available development tools, fa-
vorable licensing conditions, vendor independence, and cost. The 
Linux kernel can be run in various Linux systems from very small 
embedded computers to supercomputer clusters. Each system has 
different purposes, software packages, and applications [2]. Linux 

provides operating system facilities such as virtual memory, pro-
cesses, communication sockets, and file systems, and the Linux 
kernel has support for many data buses and communication proto-
cols useful for spacecraft developers [3].

One of the first CubeSats to use Linux was QuakeSat, launched 
in 2003. Since then, Linux has been used in several CubeSats and 
other spacecraft, perhaps most notably in Falcon and Dragon 
space vehicles built by SpaceX. CubeSats that have used Linux 
have been studied in [1], and include at least QuakeSat, UWE-1 
and UWE-2, IPEX, Lightsail-1, PhoneSat satellites, and the Dove 
satellite constellation. The STRaND-1 mission that used both a 
Linux-based single-board computer and an Android smartphone 
has been described by Bridges et al. [4].

THE AALTO-1 PROJECT

Aalto-1, shown in Figure 1, is a 4 kg nanosatellite designed and 
built by students and researchers at Aalto University. The project 
started in 2010 [5] and the satellite was launched on June 23, 2017. 
In addition to the on-board computer, platform subsystems include 
Ultra High Frequency (UHF) [6] and S-band radios [7], a global 
positioning system (GPS)-based navigation system [8], Electrical 
Power System (EPS) [9] and Attitude Determination and Control 
System (ADCS) [10].

The satellite carries three payloads. Aalto Spectral Imager 
(AaSI), built at the VTT Technical Research Centre of Finland, 
is a technology demonstration that aims to produce images of 
the Earth in several narrow visual and near-infrared wavelength 
bands [11]. Radiation Monitor (RADMON), built at the University 
of Turku, is used to gather data on the 10–200 MeV proton and 
0.7–10 MeV electron environment around Earth [12]. Electrostatic 
Plasma Brake (EPB), built by a consortium led by the Finnish Me-
teorological Institute, is a charged tether that will be deployed by 
spinning the satellite near the end of the mission. It is expected that 
when moving through the ionosphere, the charged tether produces 
an observable braking effect due to Coulomb drag [13].

The design of Aalto-1 has been based around the 3U CubeSat 
standard, which sets the satellite size at 340.5 mm × 100.0 mm × 
100.0 mm and maximum mass at 4 kg. Using the CubeSat stan-
dard has allowed cooperation and learning from other academic 
CubeSat projects.

The satellite is intended to be operated for approximately two 
years. In the first part of the mission, AaSI and RADMON are op-
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erated in three-axis stabilized mode, and ADCS is used to point the 
AaSI instrument toward ground targets of interest. In the second 
phase, the ADCS is used to spin up the satellite in order to deploy 
the EPB using centrifugal force [14].

ON-BOARD COMPUTER DEVELOPMENT

TIMELINE

The Aalto-1 satellite concept was the outcome of a space technol-
ogy course at Aalto University during spring 2010. Linux was al-
ready chosen as the flight computer operating system at the begin-
ning of the project [15]. Off-the-shelf single-board computers such 
as Gumstix or Beagleboard were considered for the OBC, but it 
was decided to develop custom hardware for educational purposes. 
By the preliminary design review in late 2011, the on-board com-
puter design included two cold-redundant AT91RM9200 proces-
sors and an arbiter microcontroller selecting which processor is 
active. By this stage, the main architecture and responsibilities of 

the software had been outlined, including kernel configuration and 
use of the Unsorted Block Image File System (UBIFS).

Flight software development began with first commits to 
the Git version control system in early 2012, focusing on mak-
ing all the required drivers work. Software development started 
AT91RM9200-based single-board computers such as BF220 and 
Centipad. First versions of the on-board computer, modeled after 
these two existing computers, were produced in 2012 [16].

Five versions of the hardware were produced iteratively during 
the project. For simplicity, first versions of the custom on-board 
computer hardware only included one of the two redundant proces-
sor branches. By the critical design review in mid-2013, versions 
2 and 3 of the on-board computer had been built. Due to the rapid 
and iterative development, much of the on-board computer hard-
ware and software designs, including documentation, were placed 
in GitHub under version control, while Google Drive was used 
elsewhere in the project.

Most of the application software and the flight hardware were 
developed between 2013 and 2015. Versions 4 and 5 of the on-

Figure 1.
Flight model of the Aalto-1 nanosatellite, with various subsystems highlighted.
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board computer were developed in 2014, with version 5 becoming 
the flight model. The launch had been scheduled to occur already 
in 2015, but after being repeatedly delayed, the additional time was 
used to finalize the ground segment to match the on-board tele-
command/telemetry implementation. By mid-2016, the on-board 
software design was final, but improvements to the ground station 
continued up to the launch and slightly beyond it.

Although the satellite development milestones have followed 
the waterfall model, the actual development process has been it-
erative, as subsystems and software have been prototyped several 
times and sometimes remade from scratch. On-board software 
development time has been estimated by analysing version con-
trol system commits to the project's Git repository. The five most 
active developers contributed 90% of the commits, and based on 
their commit rate per day, it was estimated that developing the 
Aalto-1 on-board software took around 6.195 person-years. The 
Aalto-1 development timeline is visualized in Figure 2.

IMPLEMENTATION

Designs for the Aalto-1 on-board computer circuit boards have 
been mostly done using Autodesk Easily Applicable Graphical 
Layout Editor (EAGLE). Like the Linux kernel, the on-board 
computer software has been written mostly in C, and high-level 
operational scripts—known as on-board control procedures in tra-
ditional space industry—have been implemented as shell scripts. 
The board designs and the software source code are maintained 
in GitHub.

Much of the satellite software has been developed with desktop 
PCs with common tools used for C development on Linux, such as 

GNU Compiler Collection and other tools in the GNU toolchain. 
Development tool versions were frozen to ensure repeatable results 
across developers. To facilitate remote development and testing 
with real hardware, the Aalto-1 satellite engineering model was 
connected to the internet using secure shell (SSH) to provide re-
mote access. This connection has allowed developers to upload the 
latest versions of application programs and operation scripts to the 
on-board computer to test them in the presence of actual subsystem 
hardware models.

The engineering model consists of the latest working models 
of platform and payload subsystems. The model is still maintained 
at the university laboratory as a “twin” of the orbiting satellite, and 
procedures can be tried on it first before performing them on the 
orbiting satellite. The engineering model is nearly identical to the 
flight model, but some subsystems such as the ADCS and the EPB 
are only partially implemented.

QUALITY ASSURANCE

To ensure that the satellite and the on-board computer hardware 
can function in space, environmental test campaigns have been 
performed. The tests, described in more detail in [17], included 
full vibration, shock, and thermal tests and limited radiation tests. 
The tests have provided confidence that the designed systems will 
function in space.

Quality assurance of the Aalto-1 on-board software has fo-
cused on following a software development process and perform-
ing high-level functional tests on the developed systems. The code 
has been made available to all software team members in GitHub 
for cross-review. Compiler warnings and static analysis with clang 

Figure 2.
Aalto-1 development phases and milestones, with software and ground station development in focus. The on-board computer hardware production 
aligns with the overall satellite production phase. (1) Initial report published; (2) preliminary design review; (3) critical design review; (4) test readiness 
review; (5) flight readiness review; and (6) launch.
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scan-build tool have been used to detect potential problems in the 
source code. Developers have been expected to perform at least 
basic unit testing on their component under development before 
uploading the software to the engineering model for integration 
testing.

Integration testing has been done by driving the developed 
programs manually on the engineering model, or by writing shell 
scripts that use several programs together. So-called “health check 
scripts,” written as a part of mission operations development, have 
also been used. These scripts can be run before starting some scien-
tific activity, to ensure that all required subsystems are responsive 
and healthy. The health check scripts were run, for example, dur-
ing and after environmental qualification tests to ensure that the 
health of subsystems is not affected by the environmental stresses. 
As the scripts consist of very high-level checks, they require much 
of the satellite to work perfectly; unfortunately, when problems ap-
pear, they may not be sufficient to track down the exact cause of 
problems.

Testing has focused on only those 
software parts that have been writ-
ten for the project, as Linux and other 
off-the-shelf software components are 
expected to be reliable. While all soft-
ware components written for the proj-
ect have been tested, most testing has 
focused on the communication soft-
ware, since it is the most critical.

ON-BOARD COMPUTER DESIGN

HARDWARE

The Aalto-1 OBC is a single-board 
computer designed to fit on a single 9.0 
cm × 9.6 cm CubeSatKit circuit board 
[18]. (While Aalto-1 has several micro-
controllers with various firmware, the 
term OBC refers to the satellite main 
computer.) It has two cold-redundant 
AT91RM9200 microcontrollers run-

ning at 150 MHz as the main processors. An MSP430FR5729 
microcontroller acts as an arbiter, selecting which of the main pro-
cessors is active. The mass of the on-board computer is only 75.0 
grams, and power consumption is between 250 and 450 mW from 
a 3.3 V power supply. The Aalto-1 OBC flight model is depicted 
in Figure 3.

Each processor is externally interfaced to its own 8 MB 
DataFlash, 8 MB Parallel NOT-OR (NOR) Flash, 32 MB random 
access memory (RAM), and 256 MB NOT-AND (NAND) Flash. 
Each NAND flash stores two file system images (a nominal 200 
MB file system and a backup 56 MB file system), thus the satellite 
has in total four file system images. The file systems are used to 
store Linux system files and mission data. A software Error Cor-
rection Code (ECC) driver in the Linux kernel is used to protect the 
data on the NAND flashes. The DataFlash and NOR Flash are used 
as reprogrammable boot memory. Both contain a bootloader and 
Linux kernel, and both can be used to boot the system. The Linux 
kernel and rest of the on-board software are loaded to RAM at 
boot. Components with CubeSat or other spaceflight heritage have 
been preferred when selecting parts for the on-board computer; a 
comprehensive list can be found in [19].

The CubeSatKit stack connector, shown on top of Figure 3, 
is used to connect the remaining satellite systems to the on-board 
computer via I2C, serial peripheral interface (SPI), and universal 
asynchronous receiver/transmitter (UART). OBC is the master 
of the I2C and SPI buses. A micro-D connector on the side of the 
board provides UART access to the OBC and allows recharging 
the satellite batteries. The connections are shown in Figure 4.

The satellite platform has been developed mostly in Aalto Uni-
versity, while some parts such as the attitude control system and 
electrical power system have been purchased from outside provid-
ers. The scientific payloads, as mentioned previously, have been 
provided by various institutes and universities around Finland.

Figure 3.
The bottom and top sides of the Aalto-1 on-board computer flight mod-
el, with the microcontrollers and memory chips annotated: (1) 256 MB 
NAND Flash, (2) 8 MB NOR Flash, (3) 32 MB SDRAM, (4) MSP430 
arbiter, (5) 8 MB DataFlash, (6) AT91RM9200 microcontroller.

Figure 4.
Subsystems and data buses connected to the on-board computer [19].
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SOFTWARE

The Aalto-1 on-board software is built 
around applications running on Linux. 
As the on-board computer has no hard 
real-time deadlines, it is possible to use 
Linux without any special real-time 
adaptations. The applications utilise 
libraries to communicate with satellite 
subsystems and data buses. A diagram 
of the software modules is presented 
in Figure 5. Linux kernel 3.4.106 is 
used, and some patches have been ap-
plied to support the Aalto-1 hardware. 
Drivers have been added for an exter-
nal real-time clock and configurations 
have been modified for SPI, I2C, light-
emitting diodes, and heartbeat timers. 
Kernel patches were applied to add 
userland interfaces for ECC statistics 
and for the I2C bus reset functionality.

A custom bootloader was developed to minimize the size of the 
boot partition. On each boot, the bootloader checks a file system 
selection signal from the arbiter and performs an ECC check on the 
kernel image. The kernel and the included applications have been 
carefully tailored to avoid existence of unused software. Buildroot 
2014.02 has been used to configure and build the Linux kernel for 
Aalto-1. BusyBox is used to provide lightweight implementations 
of several general-purpose Linux programs and utilities. For ap-
plication programming, uClibc 0.9.33.2 is used as a small footprint 
version of the C standard library. This selection of tools is quite 
common for embedded Linux systems [2], [3]. In-house developed 
utilities include a memory checking program and a housekeeping 
utility that maintains a data pool of housekeeping values and up-
dates them to the radio beacon.

Libraries developed for the project include libarbiter for com-
municating with the arbiter, libeps for communicating with the 
electrical power system, libicp for an internal communication pro-
tocol over I2C, and libradio and libsband for communicating with 
the UHF and S-band radios.

Application programs provide the mission-specific logic to 
determine how the various subsystems are handled. Subsystem-
related application programs include electrical power system 
manager, GPS manager, attitude determination and control sys-
tem manager, arbiter manager, S-band and UHF managers, and 
managers for the scientific payloads. Two highest-level applica-
tions are communications manager and mission scheduler. The 
communications manager handles the telecommand-telemetry 
link with ground. The telecommand-telemetry protocol is be-
spoke for the Aalto-1 mission, but it has been inspired by the 
European Cooperation for Space Standardization (ECSS) packet 
utilization standard [20].

Most of the programs have been written in C, but shell scripts 
are used to automate Aalto-1 mission operations. Since many of 
the application programs controlling various payloads operate with 
standard input/output, it allows scripts to pipe outputs from some 

subsystem programs into files or other programs and add logic in 
between; this follows the UNIX pipeline principle.

Portable Operating System Interface (POSIX) syslog facilities 
are used to produce log files about system health and software sta-
tus; these logs are downlinked as a part of housekeeping data.

USING THE COMPUTER

When the ground operator sends a telecommand over the UHF link 
to the receiver on the satellite, libradio and the communications 
manager are activated to maintain the ground-satellite data link. 
The communications manager identifies the incoming telecom-
mand packet and forwards it to the correct on-board service and 
produced telemetry packets are relayed to the ground. Available 
services are listed in Table 1. Much of the satellite operations will 
be handled either by scheduling operations using the scheduler or 
by uploading shell scripts to the satellite, and by triggering their 
execution either by the scheduler or by a subsequent telecommand.

An on-board scheduler provides capability for scheduling 
one-time or periodic operations. The scheduler program runs in 
a continuous loop and accepts commands for adding and deleting 
one-time and recurring tasks, and also listing what commands have 
been currently scheduled. The scheduler can also be switched be-
tween safe mode and nominal mode, controlling what list of tasks 
can be activated, and where scheduler logs are stored. At startup, 
the scheduler is by default in safe mode, and has to be separately 
commanded to nominal mode.

Much of the on-board computer software can be updated dur-
ing flight. The application program binaries and operations script 
text files are residing on the root filesystem and can be easily re-
placed by transmitting new files from ground. Since the satellite 
has redundant boot chains on different memories, the kernels and 
bootloaders in NOR and DataFlash can be safely updated by trans-
mitting a new kernel image and writing it to the desired memory. 
The arbiter firmware and most of subsystem firmware, however, 
cannot be updated during flight.

Figure 5.
The Aalto-1 on-board software is based on applications running on Linux. The communications infra-
structure allows commanding rest of the subsystems via the command line.
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FAULT DETECTION, ISOLATION, AND RECOVERY

Fault detection, isolation, and recovery (FDIR) measures aim to 
recover Aalto-1 from any error situation to a known, safe configu-
ration [21]. On a conceptual level, the on-board software contains 
two high-level modes: safe mode, which is entered after boot and 
in which only the most essential equipment needed for communi-
cation are enabled, and nominal mode, which is entered when the 
satellite is commanded to enable further equipment. The satellite 
stays in nominal mode until it is rebooted again.

FDIR focus has been on the custom code developed for Aalto-1, 
as common Linux code is expected to be dependable. The aim of 
FDIR is to maintain the satellite in a state in which communication 
with the ground station is possible, and thus the outcome of many 
FDIR functions is to reboot the computer to safe mode. FDIR is 
handled primarily by the watchdogs listed in Table 2.

The bus watchdog in the EPS firmware expects that the EPS is 
regularly sent commands over one of the redundant I2C buses; this 
is handled by the OBC. If the EPS does not receive any commands 
within a specified timeout of a few minutes, it will try to unblock 
the bus by power cycling the entire satellite.

The arbiter watchdog expects a periodic heartbeat signal 
from the OBC, which is activated when OBC successful boots 
to userland level. After activation, only kernel panic can stop this 
heartbeat. After 500 heartbeats, the present OBC configuration is 
considered a working one. If heartbeat timeout occurs before that, 
a different OBC configuration will be selected by the arbiter; oth-
erwise, the current configuration is restarted. Each processor has 
access to two kernels and two filesystems, thus there are in total 
eight different bootable configurations.

The kernel watchdog uses a hardware watchdog in the 
AT91RM9200 processor supported by the Aalto-1 Linux kernel. It 
is enabled after booting to userland, and it expects to be regularly 
refreshed by the userland watchdog. On timeout, the kernel watch-
dog increments a counter and tries to reboot the OBC without 
alarming the arbiter. After a certain number of consecutive reboots, 

the arbiter switching logic is triggered intentionally by inhibiting 
the heartbeat signal.

The userland watchdog is an independent program started at 
boot that enables the OBC heartbeat (unless it has been decided 
to trigger the switching logic), activates the kernel watchdog, and 
monitors the date stamp of a watchdog file on the file system. The 
date stamp is regularly updated by the main loop of the commu-
nications manager. If the watchdog file timestamp is updated, the 
userland watchdog program resets the kernel watchdog; if the file 
is not updated, the kernel watchdog is not updated, which will trig-
ger a reboot of the OBC [21].

The contact watchdog monitors the time since last communi-
cation; the watchdog is triggered if no communication has taken 
place in the last 12 hours. If communication has not occurred, the 
active branch of the UHF radio is switched. As 12 hour pauses 
in communication are quite normal, both UHF radio branches are 
regularly used.

Fault detection and prevention features also include ECC 
checking of memories and use of checksums in the communication 
protocols; a comprehensive list can be found in [21].

GROUND STATION

Aalto-1 is operated from a ground station that is located at the uni-
versity campus in Espoo, Finland. The ground station has uplink 
and downlink capability in VHF and UHF bands and downlink ca-
pability in S-band. The ground station operations have been semi-
automated, so that a single operator sitting at the satellite control 
room can control the ground station and operate the satellite using 
a single desktop computer. Remote operations over SSH are also 
possible. The ground station software has been written in Python, 
as it has many software modules for radio operations and satel-
lite tracking available off-the-shelf. The telecommand-telemetry 
protocols written on-board in C are written on the ground side in 
Python. The automated protocols allow fast exchange of telecom-
mands and telemetry, including uplinking and downlinking files. 

Table 1.

Aalto-1 Telecommand (TC) and Telemetry (TM) Services

ID Name Description

1 TC verification Acknowledge execution of 
TC packets

2 Ping Connection test

3 Housekeeping Transmit health 
information

5 Execute Execute a command in the 
Linux shell

6 Scheduling Manage the mission 
scheduler

7 File transfer Transfer files

8 Retransmission Retransmit TM packets

Table 2.

Watchdogs Employed in Aalto-1

Name Location Monitored Item
Recovery 

Action

Bus EPS 
firmware

I2C bus Power cycle

Arbiter Arbiter 
firmware

OBC heartbeat OBC branch 
logic

Kernel Linux 
kernel

Userland 
watchdog

Reboot 
OBC

Userland Linux 
userland

Comms SW 
main loop

Stop kernel 
watchdog

Contact Comms 
SW

Time of last 
communication

Change 
UHF branch
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Due to its sun-synchronous orbit, there are up to six communica-
tion passes per 24 h with Aalto-1, each lasting approximately 10 
min or less. The operator console of the ground station is shown 
in Figure 6.

FLIGHT RESULTS

Aalto-1 was launched to orbit on an Indian Polar Satellite Launch 
Vehicle rocket from the Satish Dhawan Space Centre at 03:59 Co-
ordinated Universal Time (UTC) on June 23, 2017. The launch ve-
hicle carried a total of 31 satellites of various sizes to orbit. Aalto-1 
was deployed from the rocket at 04:22:08 UTC, and an on-board 
timer switched on the satellite approximately 30 min after deploy-
ment [22]. The satellite beacon was observed from the ground 
station immediately after the satellite came over the horizon over 
Finland, and housekeeping data in the beacon indicated that the on-
board computer had started. Two-way telecommand-telemetry link 

was established on subsequent passes during the same day, show-
ing that the OBC is responsive to commands. The ground station 
was fine-tuned during the communication sessions, improving the 
link and reducing packet loss.

Initial operations focused on ensuring that all the subsystems 
were healthy. After startup and establishing a successful telecom-
mand-telemetry link, it was concluded from the received telemetry 
that the antennas, electrical power system, UHF radio, and the on-
board computer worked as expected. Attitude control system read-
ings indicated that the satellite was slowly tumbling around its long 
axis. Activating the attitude control was considered too risky to be 
attempted immediately, and it was decided to maintain the satellite 
in the slow tumble while other systems were tested.

Other subsystems were tested one by one: the first GPS fix was 
obtained six days after launch on June 29, making the GPS the first 
noncritical subsystem to be successfully operated. The GPS mea-
surements helped identify the correct two-line element set from the 
published set of orbits for satellites launched on the same rocket. 
The exact orbit is critical for communications; as the UHF carrier 
wave of Aalto-1 is disabled when no data is transmitted, the Dop-
pler shift of the satellite coming over the horizon needs to be pre-
dicted beforehand. Housekeeping data was also requested from the 
AaSI, EPB, and RADMON payloads to ensure that they also were 
responsive to commands. The devices were powered up in steps, 
and housekeeping values from the EPS were monitored.

The first image from Aalto-1, shown in Figure 7, was taken 
with the AaSI instrument on July 5; the image shows the coast-
line of Denmark as viewed from over Norway. Transmitting the 
image over the S-band link was tested. The on-board housekeep-
ing values indicated a nominal transmission, but as the satellite 
was tumbling and the S-band link requires accurate pointing, no 
S-band signal was observed at the ground station. Only the UHF 
downlink was available, and the image was downlinked over a few 

weeks with the slow bandwidth; the 
image was fully received on July 21. 
Further images were taken, and a his-
togram program was uploaded to the 
computer to analyse which of the taken 
images might contain the Earth instead 
of black space, in order to decide which 
images to downlink. A script was later 
developed that triggers imaging when 
sun sensors indicate that the satellite 
points toward Earth, eliminating im-
ages that only show black space.

The on-board computer house-
keeping telemetry values such as cen-
tral processing unit (CPU) load, RAM 
usage, file system usage, and power 
consumption have been nominal. File 
system usage has been consistent with 
operations, increasing when test im-
ages have been taken and again de-
creasing when obsolete files have been 
deleted. Some of the housekeeping val-
ues from the first month of the mission 

Figure 6.
The operator console of the Aalto-1 ground station. The middle display 
shows the command line interface used to operate the satellite, and the 
right display shows a waterfall view of the radio traffic.

Figure 7.
The first image obtained by Aalto-1, with an overlaid map from Google Earth.
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are visualised in Figure 8. File system usage increased from 40% 
to 70% during image operations on July 4 and July 5 as images 
were stored on the computer; the files remained on the OBC as 
they were being downlinked over the UHF link for much of July. 
The images were deleted from the on-board computer later on af-
ter they had been downlinked. Power consumption of the OBC 
increased in early July after more features of the computer were 
enabled after first contact. CPU and RAM usage have been mostly 
stable; the CPU usage spike nearly July 19 was due to housekeep-
ing data being sampled when AaSI data was being compressed.

The on-board computer branch (OBC1) that was enabled at 
satellite deployment had around 30-day uptime after launch, before 
it reset itself in the end of July over the so-called South Atlantic 
Anomaly; radiation was first suspected, but the problem was found 
to be caused by a bug activated by direct execution of a certain 
command on the command line. The communications manager 
main loop got stuck long enough for the userland watchdog to acti-
vate a reboot. The processor restarted without the arbiter watchdog 
noticing, and the OBC boot count maintained by the arbiter did not 
increase while the uptime counted by the OBC was reset. Using 
the specific command has since been avoided but uploading a fixed 
binary to the satellite is a possibility.

From early September to mid-October, the satellite suffered 
from instability in the electrical power system, resulting in several 
resets of the electrical power system and the arbiter. On September 
2, the redundant on-board computer (OBC2) had become the active 
one, and restoring OBC1 was attempted unsuccessfully; an electri-
cal hardware malfunction was suspected. However, restoring OBC1 
was later successful, indicating that the failure was not permanent.

A Coronal Mass Ejection (CME) occurred in early September 
2017, providing an excellent opportunity to test the radiation moni-

tor. The satellite was quickly retasked 
to collect as much data as possible with 
RADMON. Elevated proton counts 
were detected as a result of the solar 
storm; however, the instrument had not 
yet been fully calibrated, and the pro-
ton energies could not yet be accurately 
categorized. Additionally, data collec-
tion was sometimes interrupted due 
to OBC reboots; data collection was 
restarted from ground when necessary.

A total of 38 boot events occurred 
during the first five months of the mis-
sion. (A boot event refers to a group 
of one or more boots, with the group 
having a likely common cause.) The 
first boot event occurred after deploy-
ment as planned, starting up the OBC 
for the first time during the flight. In 
July, as mentioned, there was one boot 
due to a software (SW) bug and one 
commanded boot. On September 15, 
another boot was commanded, as this 
is the only way to change the active 
file system. In September and October, 

a total of 11 EPS boot events and 20 boot events of the arbiter 
occurred. An EPS boot event is caused either by a blocked I2C 
bus or battery voltages becoming too low; since no I2C troubles 
have been observed, the battery voltage is considered the likelier 
cause. A boot event of the arbiter is caused by a power loss or un-
stable input voltage, thus actually 31 boot events are likely related 
to the battery voltage problems. Cause of the battery problems is 
unknown; no battery problems were observed in July, August, or 
November. Certain devices may drain more power when activated, 
but no clear pattern has been established.

A few unexplained boot events of the OBC, which were re-
solved by the kernel watchdog without involvement of the arbiter, 
occurred during the CME event in September. It is suspected that 
these may be related to radiation, and it is also possible that some 
of the EPS and arbiter boot events are related to radiation. Boot 
events during the first five months of the mission, overlaid on the 
near-Earth proton flux [23], are visualised in Figure 9.

The satellite has mostly been commanded by either execut-
ing direct commands on the command line, or by uploading small 
scripts and then executing them. Some existing program binaries 
have also been updated. Existing scripts on the satellite have also 
been modified: for example, the AaSI script was modified to com-
pute histograms and to compress the obtained images automati-
cally. In addition to direct commanding and scripts, the on-board 
mission scheduler has been used to operate the mission.

After collecting as much calibration and science data as pos-
sible with no attitude control, detumbling was started in late Sep-
tember, around three months after launch. A problem was dis-
covered in the attitude control system that caused it to reset itself 
90 s after activation, interrupting detumbling. Implementing the 
attitude control algorithms on the OBC and driving the attitude 

Figure 8.
CPU load, RAM and file system usage, and electrical current from the Aalto-1 OBC during the first 
month in space.
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control system “manually” using only 
low-level commands was considered, 
but instead a script was developed that 
restarts the attitude control system with 
correct settings after the 90 s reset, 
removing the need for the ground op-
erator to manually restart the attitude 
control system. However, detumbling 
was still not working, and a firmware 
problem in the ADCS was suspected.

In June 2018, a working ADCS 
firmware was finally uploaded to the 
satellite, allowing successful detum-
bling. Scientific operations continue, 
and the results so far are enough to 
know the performance and characteris-
tics of the Linux-based command and 
data handling system in orbit.

DISCUSSION AND LESSONS 

LEARNED

Aalto-1 has been the first nanosatel-
lite project for most of the students 
involved, resulting in some suboptimal 
decisions affecting quality and sched-
ule. Some more obvious lessons learned by the student team in-
cluded selecting and freezing development tools early on, appreci-
ating the importance of diagnostics functions in the software, and 
using checklists during ground station operations. The I2C main 
bus was found to be prone to lockups, and Controller Area Net-
work bus was selected to be used in future Aalto University satel-
lites, starting from Aalto-2.

Real-time adaptations of Linux were not needed in Aalto-1 as 
the OBC did not have hard real-time deadlines. In missions where 
hard real-time deadlines exist, one option is to use a dedicated mi-
crocontroller to handle them; another option is to use some real-
time Linux variant [1]. Resources lost to unused packages were not 
a problem in Aalto-1, as the OBC had performance and disk space 
to spare, and the Linux system created with Buildroot was tailored 
to remove most unused features.

Off-the-shelf computer hardware should preferably be used 
instead of designing custom hardware, unless desirable from an 
educational point of view. This would also allow more focus on 
developing the application software, as the embedded computer 
likely already has tools for basic Linux setup.

Using the UNIX pipeline principle allowed developing small-
er, modular programs and quickly integrating them with a wide 
range of existing utilities for Linux. Existing off-the-shelf utilities 
on the computer have also provided a useful operations toolkit for 
example for compressing data to be downlinked. Modularity also 
facilitated in-orbit updates.

The satellite file systems could have been partitioned better. 
For example, there could be a read-only root file system that would 
always be bootable if the memory hardware is intact. Science and 

mission data could be maintained in a separate file system, and 
the basic system could be bootable even without the science file 
system. In Aalto-1, both boot-critical data and modifiable mission 
data are maintained on the same file system, unnecessarily add-
ing risk of unintended writes to the boot-critical files which could 
make that configuration unbootable.

An interface control spreadsheet, maintained in Google Drive, 
sped up the development of the software [24]. The most impor-
tant interface details of each subsystem, used as the baseline for 
development, were maintained in the spreadsheet. The interface 
control spreadsheet was managed by the system engineer who ei-
ther accepted or rejected incoming changes. Having a centralized 
document to which changes were proposed avoided the process 
of preparing lengthy interface control documents and reviewing 
them; such documents could also have become outdated very 
quickly [25].

Development of the on-board data handling system should 
heavily focus on providing a working and robust telecommand-te-
lemetry link with ground, including high throughput services such 
as file transfer. It is also prudent to develop a dedicated house-
keeping service to obtain information about the satellite health 
without invoking too many other high-level functions. When the 
basic communication system is in place, in a Linux-based system 
it is very easy to develop modular programs that communicate with 
each other for example over the command line.

As the Linux-based computer is a very complex and capable 
system, it is easy to lose track of the current system state. It takes 
several telecommands and telemetry back and forth to establish, 
for example, what is the current filesystem state, which programs 

Figure 9.
Various boot events affecting the OBC from the first five months in space, overlaid on proton flux values 
obtained from [23].
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are running, etc. The limited communication bandwidth should 
have been considered more during development, for example by 
integrating the slow bandwidth to all executed tests.

FDIR on satellite level was considered unnecessarily late in 
Aalto-1 development, and while separate systems were able to 
handle their own failures, FDIR integration on the satellite level 
proved difficult; for example, the arbiter firmware could not be di-
rectly commanded to change OBC branch, thus the branch chang-
ing had to be triggered by inhibiting the OBC heartbeat [21].

The on-board scripts have proved very useful and versatile 
when unexpected situations have occurred, and they were found to 
be excellent tools for functional testing of the satellite. The mission 
planners were able to produce operations scripts which formalised 
the mission plan into a testable format, allowing a test-driven de-
velopment approach. While not done in Aalto-1, such scripts could 
be taken into use as automated test scripts, executed, for example, 
every night as part of continuous integration as suggested in [26].

CONCLUSIONS

This article outlined the development process, ultimate design, 
and flight results of the Aalto-1 on-board computer and software. 
Based on Git commits, development of the Linux-based on-board 
software took approximately 6.195 person-years of work; this de-
velopment pace by a student team was made possible by the large 
existing catalogue of off-the-shelf software that could be taken into 
use as a part of the flight software. The existence of freely avail-
able and powerful development environments for Linux was also 
a contributing factor.

The satellite was successfully launched on June 23, 2017, and 
the results as of mid-2018 have indicated that the satellite and its 
on-board computer continue to perform well. No hardware prob-
lems within the OBC have been observed, and software problems 
have been circumvented with in-flight patches and avoiding use of 
certain configurations and commands. During the first five months 
of the mission, the on-board computer encountered 38 boot events, 
of which 35 have been unplanned; however, 31 out of 35 seem to 
be related to the electrical power system rather than the on-board 
computer, one boot event is explained by an identified software 
bug, and the remaining three could be radiation-related, as they 
were observed during a solar storm in September 2017.

Lessons learned during development included favoring off-the-
shelf computer hardware over in-house development, developing 
modular programs using the UNIX pipeline principle, partitioning 
file systems to read-only boot partitions and mission data partitions, 
maintaining a centralized interface control spreadsheet, keeping 
in mind that the slow communication link limits the observability 
of the system state during operations, taking FDIR design into ac-
count early in the development process, and preparing automated 
test scripts that can later be reused as mission operations scripts. 
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