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Swapping (Paging)

* Paging: [OS capability of] using a
secondary storage to store and retrieve
data

- With RAM being primary

- Storing and retrieving happens on a per-page
basis

 Page
- Uni-size storage block, usually of size 2n
- Corresponds to a single record in page table

* Paging is only possible with VM enabled
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Embedded device objectives

* [very] limited RAM

 [relatively] slow storage

- Using swap will hurt performance
* [relatively] small storage

- Hardly is there a place for big swap
* Flash chip used as a storage

- Swap on flash wears it out fast



Swapping in Embedded

* Should be applicable

- Constrained RAM
 Butisisn't sometimes

- Constrained storage
 May have adverse effects

- Flash storage faster wear-out
- Longer delays if the storage device is slow

* There has to be a way out...



Swapping optimization: zswap

* zswap: compressed write-back cache for
swapped pages

- Write operation completion signaled on write-to-
cache completion

 Compresses swapped-out pages and
moves them into a pool

— This pool is dynamically allocated in RAM
* Configurable parameters

- Pool size
- Compression algorithm



zswap backend: zbud

zbud: special purpose memory allocator
- allocation is always per-page

Stores up to 2 compressed pages per
pPage

- One bound to the beginning, one to the end
- The in-page pages are called “buddies”

Key characteristics

- Simplicity and stability

zbud is the allocator backend for zswap



RAM as a swap storage

 Compression required
- No gain otherwise
- But increases CPU load

* Implementation of a [virtual] block
device required

* Careful memory managementis
required

— Should not use high-order page
allocations



* Block device for compressed data
storage in RAM

- Compression algorithm is configurable
— Default algorithm is LZO
- LZ4 is used mostly

* Usually deployed as a self-contained
swap device

- The size is specified in runtime (via sysfs)
- Configuration is the same otherwise



/RAM vs Flash swap

 Compared on Carambola (MIPS24kc)
- Details on the configuration will follow
 Standard |/O measurement tools
- 'fio' with 'tiobench’ script
* Results

- Average read speed: 730 vs 699 (kb/s)
- Average write speed: 180.5vs 172 (kb/5s)

* Difference is larger where RAM is faster



zsmalloc: ZRAM backend

e Special purpose pool-based memory
allocator

* Packs objects into a set of non-
contiguous pages

- ZRAM calls into zsmalloc to allocate
space for compressed data

- Compressed data is stored in scattered
pages within the pool



zsmalloc and zbud compared

Compression ratio
CPU utilization
Internal

fragmentation
Latencies

zsmalloc

High (3x — 4x)
Medium/High
yes

Medium/Low

zbud

Medium/Low (1.8x — 2x)
Medium

no

Low



zpool: a unified API

« Common API for compressed memory
storage

 Any memory allocator can implement
zpool API

- And register in zpool
* 2 main zpool users

- zbud
- zsmalloc



zswap uses zpool API!

e zswap is now backend-independent
- As long as the backend implements zpool API
e zswap can use zsmalloc

- Better compression ratio
- Less disk/flash utilization




What if ZRAM used zbud?

e Persistent storage is not used anyway
— Compression ratio may not be the key
* No performance degrade over time

* Less dependency on memory subsystem
 CPU utilization may get lower
 Throughput may get higher

e Latencies may get lower



Why can't ZRAM use zbud?

 zbud can't handle PAGE SIZE
allocations

- Uses small part of the page for internal
structure

« Called struct zbud header
- Easy to fix: it can go to struct page

« ZRAM doesn't use zpool API

- zsmalloc API fits zpool API nicely
- Easy to fix: just implement it



Allow ZRAM to use zbud

* An initiative taken by the author

- Allow PAGE_SIZE allocations in ZBUD
- Make ZRAM use zpool

* Two mainlining attempts

e https://lkml.org/lkml/2015/9/14/356 [1]
e https://lkml.org/lkml|/2015/9/22/220 [2]

- Faced strong opposition from ZRAM authors
- Vendor neutrality questionable

* More attempts to come


https://lkml.org/lkml/2015/9/14/356
https://lkml.org/lkml/2015/9/22/220

Prerequisites

* Use fio for performance measurement

- Written by Jens Axboe
- Flexible and versatile

o EXT4 file system on /dev/zramO
- 50% full
» A flavor of fio 'enospc' script
- Adapted for smaller block device (zram)

* 40 iterations per z--- backend
(zbud/zsmalloc)



Test device 1

e Sony Xperia Z2
- MSM8974 CPU

e 2.3 GHz Quad-Core Krait™
- 3 GB RAM

 Cyanogenmod build as of Jan 15,
2016 (12.1)

- A flavor of Android 5.1.1
— Custom 3.10-based kernel



/RAM performance: Android
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/RAM latency: Android
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/RAM performance: Android

Okay what happens in the
long run, does zbud remain
superior to zsmalloc?
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Test device 2

e Intel Minnowboard Max EVB

- 64bit Atom™ CPU E3815 @ 1.46GHz
- DDR3 2 GB RAM
- Storage 4 GB eMMC

e Debian 8.4 64 bit

- Custom 4.3-based kernel



/RAM performance: x86_64
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Test device 3

» Carambola 2
- MIPS32 24Ke
- Qualcomm/Atheros AR933171 SoC
- 400 MHz CPU
- 64 MB DDR2 RAM
- Storage 512 MB NAND flash

* OpenWRT

- GitasoflJan 15, 2016
- Custom 4.3-based kernel
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/RAM latency: MIPS32
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 Compressed RAM swap is a generous
idea
- Many systems can benefit from it
* Two implementations mainlined
- Zswap: mostly targeting big systems
- ZRAM: mostly for embedded / small systems
 Each has its own backend

- Zswap uses zbud
- ZRAM uses zsmalloc



« Compressed RAM swap is the way out
for embedded systems

« ZRAM over zbud is a good match for
non-compression-ratio-demanding
cases

- Lower latencies

- Higher throughput

- Minimal aging
 Having options is good



swapping completed.

Questions?
mailto: vitalywool@gmail.com
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