Swapping and
embedded:

compression
relieves the pressure?

Vitaly Wool
Embedded Linux Conference 2016

Swapping (Paging)

* Paging: [OS capability of] using a
secondary storage to store and retrieve
data

- With RAM being primary

- Storing and retrieving happens on a per-page
basis

 Page
- Uni-size storage block, usually of size 2n
- Corresponds to a single record in page table

* Paging is only possible with VM enabled

Swapping

operating
system

process
PI

user
space

main memory

@ swap in

backing store

Embedded device objectives

* [very] limited RAM

 [relatively] slow storage

- Using swap will hurt performance
* [relatively] small storage

- Hardly is there a place for big swap
* Flash chip used as a storage

- Swap on flash wears it out fast

Swapping in Embedded

* Should be applicable

- Constrained RAM
 Butisisn't sometimes

- Constrained storage
 May have adverse effects

- Flash storage faster wear-out
- Longer delays if the storage device is slow

* There has to be a way out...

Swapping optimization: zswap

* zswap: compressed write-back cache for
swapped pages

- Write operation completion signaled on write-to-
cache completion

 Compresses swapped-out pages and
moves them into a pool

— This pool is dynamically allocated in RAM
* Configurable parameters

- Pool size
- Compression algorithm

zswap backend: zbud

zbud: special purpose memory allocator
- allocation is always per-page

Stores up to 2 compressed pages per
pPage

- One bound to the beginning, one to the end
- The in-page pages are called “buddies”

Key characteristics

- Simplicity and stability

zbud is the allocator backend for zswap

RAM as a swap storage

 Compression required
- No gain otherwise
- But increases CPU load

* Implementation of a [virtual] block
device required

* Careful memory managementis
required

— Should not use high-order page
allocations

* Block device for compressed data
storage in RAM

- Compression algorithm is configurable
— Default algorithm is LZO
- LZ4 is used mostly

* Usually deployed as a self-contained
swap device

- The size is specified in runtime (via sysfs)
- Configuration is the same otherwise

/RAM vs Flash swap

 Compared on Carambola (MIPS24kc)
- Details on the configuration will follow
 Standard |/O measurement tools
- 'fio' with 'tiobench’ script
* Results

- Average read speed: 730 vs 699 (kb/s)
- Average write speed: 180.5vs 172 (kb/5s)

* Difference is larger where RAM is faster

zsmalloc: ZRAM backend

e Special purpose pool-based memory
allocator

* Packs objects into a set of non-
contiguous pages

- ZRAM calls into zsmalloc to allocate
space for compressed data

- Compressed data is stored in scattered
pages within the pool

zsmalloc and zbud compared

Compression ratio
CPU utilization
Internal

fragmentation
Latencies

zsmalloc

High (3x — 4x)
Medium/High
yes

Medium/Low

zbud

Medium/Low (1.8x — 2x)
Medium

no

Low

zpool: a unified API

« Common API for compressed memory
storage

 Any memory allocator can implement
zpool API

- And register in zpool
* 2 main zpool users

- zbud
- zsmalloc

zswap uses zpool API!

e zswap is now backend-independent
- As long as the backend implements zpool API
e zswap can use zsmalloc

- Better compression ratio
- Less disk/flash utilization

What if ZRAM used zbud?

e Persistent storage is not used anyway
— Compression ratio may not be the key
* No performance degrade over time

* Less dependency on memory subsystem
 CPU utilization may get lower
 Throughput may get higher

e Latencies may get lower

Why can't ZRAM use zbud?

 zbud can't handle PAGE SIZE
allocations

- Uses small part of the page for internal
structure

« Called struct zbud header
- Easy to fix: it can go to struct page

« ZRAM doesn't use zpool API

- zsmalloc API fits zpool API nicely
- Easy to fix: just implement it

Allow ZRAM to use zbud

* An initiative taken by the author

- Allow PAGE_SIZE allocations in ZBUD
- Make ZRAM use zpool

* Two mainlining attempts

e https://lkml.org/lkml/2015/9/14/356 [1]
e https://lkml.org/lkml|/2015/9/22/220 [2]

- Faced strong opposition from ZRAM authors
- Vendor neutrality questionable

* More attempts to come

https://lkml.org/lkml/2015/9/14/356
https://lkml.org/lkml/2015/9/22/220

Prerequisites

* Use fio for performance measurement

- Written by Jens Axboe
- Flexible and versatile

o EXT4 file system on /dev/zramO
- 50% full
» A flavor of fio 'enospc' script
- Adapted for smaller block device (zram)

* 40 iterations per z--- backend
(zbud/zsmalloc)

Test device 1

e Sony Xperia Z2
- MSM8974 CPU

e 2.3 GHz Quad-Core Krait™
- 3 GB RAM

 Cyanogenmod build as of Jan 15,
2016 (12.1)

- A flavor of Android 5.1.1
— Custom 3.10-based kernel

/RAM performance: Android

200000
180000
160000
140000
120000
100000

—zsmalloc — zbud

80000

60000
peall Outcome: zbud clearly outperforms

20000

0
123456 7 8 91011121314151617 1819 2021 222324252627 2829 30 31 32 33 34 3536 37 38

/RAM latency: Android

80000

70000 i
Outcome: zbud outperforms again

60000

o mzsmalloc ®zbud

40000 -

30000 -

2 4 6 81012141618202224 2628 3032 34 36 384042 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
1357 9111315171921232527293133353739414345474951535557596163656769717375

/RAM performance: Android

Okay what happens in the
long run, does zbud remain
superior to zsmalloc?

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

/RAM performance: Android

‘b ‘.‘ ind | | WiY4 MA‘ ‘A'\‘VM

— zsmalloc— zbud

Outcome: yes it does.

2 4 6 81012141618202224262830323436384042444648505254565860626466687072747678808284868890929496
1 3 5 7 91113151719212325272931333537394143454749515355575961636567697173757779818385878991939597

Test device 2

e Intel Minnowboard Max EVB

- 64bit Atom™ CPU E3815 @ 1.46GHz
- DDR3 2 GB RAM
- Storage 4 GB eMMC

e Debian 8.4 64 bit

- Custom 4.3-based kernel

/RAM performance: x86_64

500000

450000

e

400000
350000
300000
—zsmalloc — zbud

250000

200000

150000
s Outcome: obvious.

50000

0
123456 7 8 9101112131415161718192021222324252627282930313233343536373839

20000 [

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

~

/RAM latency: x86_64

Outcome: zbud is better again.

M zsmalloc ® zbud

™

e i n

TR PRSI PRPERGSPLRSPTE ORGP QPP

Test device 3

» Carambola 2
- MIPS32 24Ke
- Qualcomm/Atheros AR933171 SoC
- 400 MHz CPU
- 64 MB DDR2 RAM
- Storage 512 MB NAND flash

* OpenWRT

- GitasoflJan 15, 2016
- Custom 4.3-based kernel

30000

25000

20000

15000

10000

5000

0

/RAM performance: MIPS32

S

—zsmalloc —zram

Outcome: roughly equal.

123456 7 8 910111213141516171819202122232425262728293031323334353637383940

/RAM latency: MIPS32

50000

45000 MW

40000 M

35000 M

30000 M

25000 W

20000

15000 1

10000 1

5000 -

2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74
1 3 5 7 9 1113151719 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

 Compressed RAM swap is a generous
idea
- Many systems can benefit from it
* Two implementations mainlined
- Zswap: mostly targeting big systems
- ZRAM: mostly for embedded / small systems
 Each has its own backend

- Zswap uses zbud
- ZRAM uses zsmalloc

« Compressed RAM swap is the way out
for embedded systems

« ZRAM over zbud is a good match for
non-compression-ratio-demanding
cases

- Lower latencies

- Higher throughput

- Minimal aging
 Having options is good

swapping completed.

Questions?
mailto: vitalywool@gmail.com

	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

