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Agenda

What is Parsec?

Using Parsec

Details of Parsec/Yocto Integration

Questions
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Parsec: A Platform Abstraction For Security
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Parsec in the Security API Landscape
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The Growing Ecosystem
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Why Add Parsec To Yocto?

• Architecture Neutral
• Supports Diverse Hardware Through Customization
• Common Developer Experience Across Platforms

• Commitment to Open Development
• Targeting IoT/Embedded/Edge Space

• Complements Packaging For Off-The-Shelf Distros

Meta-parsec is a sublayer of meta-security since Hardknott
https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec

https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec
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How To Use Parsec In Yocto

Build Configure Run Consume
Include meta-parsec, meta-
rust and meta-clang in your 
layers list. Include parsec-
service into your image.

The Parsec service is a 
single executable that runs 
locally. It can be managed 

with systemd
(recommended), or SysV

init scripts.

Parsec is configured simply 
with a TOML file. Examples
are provided to connect the

service with TPM, 
HSM/PKCS#11 or software

back-ends.

Use the command-line 
parsec-tool if desired or 

consume the APIs into your 
code from languages 

including Rust, C and Go,
with more to come…

https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec/README.md

https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec/README.md
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The Developer Experience: Command-Line Example
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The Developer Experience: Rust Example
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Some Details of Parsec 
Integration into Yocto

See also “Using Rust with bitbake and meta-rust” with 
Steven Walter, 14:45 UTC (Presentation Room)
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Choices For Including Rust-Based Software in Yocto

Toolchain Dependency Management

meta-rust
https://github.com/meta-rust/meta-rust

• Builds rust compiler and cargo build system from source
• Provides “crate” fetch mechanism for dependencies

meta-rust-bin
https://github.com/rust-embedded/meta-rust-bin

• Uses pre-built upstream versions of compiler and cargo
• Faster to build, but less flexible

bitbake vendoring
https://github.com/meta-rust/cargo-bitbake

• Dependencies modelled explicitly in the recipe
• Needs to be kept in sync with Cargo.toml
• Tools to auto-generate include files

cargo vendoring

• Cargo build system fetches crates by itself
• Add  CARGO_DISABLE_BITBAKE_VENDORING = "1” to recipe

https://github.com/meta-rust/meta-rust
https://github.com/rust-embedded/meta-rust-bin
https://github.com/meta-rust/cargo-bitbake
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Parsec Service Recipe (Fragment)
inherit cargo

SRC_URI += "crate://crates.io/parsec-service/${PV} \

"

CARGO_BUILD_FLAGS += " --features all-providers,cryptoki/generate-bindings,tss-esapi/generate-bindings”

DEPENDS = "tpm2-tss"

TOOLCHAIN = "clang”

PARSEC_CONFIG ?= "${S}/config.toml"

do_install_append () {

install -d -m 700 -o parsec -g parsec "${D}${libexecdir}/parsec"

install -m 700 -o parsec -g parsec "${WORKDIR}/build/target/${CARGO_TARGET_SUBDIR}/parsec" ${D}${libexecdir}/parsec/parsec

}

require parsec-service_${PV}.inc

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"SRC_URI += "file://config-tpm.toml \
"
PARSEC_CONFIG = "${WORKDIR}/config-tpm.toml" 

parsec-service_%.bbappend
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Rust Recipes In CI Pipelines

• Rust tool chain requirements can result in lengthy image build
• Use of persistent SSTATE_DIR and DL_DIR recommended
• See https://git.yoctoproject.org/cgit/cgit.cgi/meta-arm/tree/.gitlab-ci.yml

.setup: 
stage: build 
variables: 
KAS_REPO_REF_DIR: $CI_BUILDS_DIR/persist/repos 
SSTATE_DIR: $CI_BUILDS_DIR/persist/sstate
DL_DIR: $CI_BUILDS_DIR/persist/downloads 

before_script: 
- echo SSTATE_DIR = $SSTATE_DIR 
- echo DL_DIR = $DL_DIR 

https://git.yoctoproject.org/cgit/cgit.cgi/meta-arm/tree/.gitlab-ci.yml
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Learn More

https://github.com/parallaxsecond/parsec

https://parallaxsecond.github.io/parsec-book

Get the code

Read the book

https://github.com/parallaxsecond/parsec
https://parallaxsecond.github.io/parsec-book
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Join The Community

https://github.com/parallaxsecond/community

#parsec on CNCF https://slack.cncf.io

Every Tuesday at 16:30 (UK), 11:30 (US East), 08:30 (US West) 

https://github.com/parallaxsecond/community
https://slack.cncf.io/
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Q&A


