
© 2021 Parsec Project Contributors

Parsec – Platform
Abstraction for Security

Project Introduction For Yocto Virtual Summit
May 26th 2021

2 © 2021 Parsec Project Contributors

Speakers

Paul Howard
Principal System Solutions

Architect
paul.howard@arm.com

@paulhowardarm

Anton Antonov
Senior Engineer

anton.antonov@arm.com

@anta5010

mailto:paul.howard@arm.com
mailto:anton.antonov@arm.com

3 © 2021 Parsec Project Contributors

Agenda

What is Parsec?

Using Parsec

Details of Parsec/Yocto Integration

Questions

4 © 2021 Parsec Project Contributors

Parsec: A Platform Abstraction For Security

Diversity of Hardware Platforms

TRUSTED
PLATFORM

MODULE (TPM)

HARDWARE
SECURITY

MODULE (HSM)

SECURE
ELEMENTS

SERVICES IN TRUSTED
ENVIRONMENTS

EDGE NODE

PORTABLE

CONVENIENT

MULTI-TENANT

CLOUD-NATIVE

5 © 2021 Parsec Project Contributors

Service Architecture

Application

TPM

Client
Library

Parsec Service

Provider

HSM

TEE

Trusted App
Provider

ProviderAccess
Control

Listener

IPC

Wire protocol based
on PSA Crypto API

Cloud-native
delivery/orchestration

Platform-Agnostic

6 © 2021 Parsec Project Contributors

Parsec in the Security API Landscape

Hardware
TPM

Firmware
TPM HSM SmartCard Shims to Other

Technologies…
Secure

Element
Custom
HW/FW

PSA Root of
Trust

TPM 2.0 Oasis PKCS#11 Vendor-Specific
(eg. CryptoAuthLib)

PSA Functional
API

C Language Layer

Multi-Language Layer

Additional Convenience Features and Identity Management

Rust/C Interop Through Limited Number of Well-Audited Call Points

Core API Contracts Based On Strongly-Specified, Modern PSA Standards

7 © 2021 Parsec Project Contributors

The Growing Ecosystem

8 © 2021 Parsec Project Contributors

Why Add Parsec To Yocto?

• Architecture Neutral
• Supports Diverse Hardware Through Customization
• Common Developer Experience Across Platforms

• Commitment to Open Development
• Targeting IoT/Embedded/Edge Space

• Complements Packaging For Off-The-Shelf Distros

Meta-parsec is a sublayer of meta-security since Hardknott
https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec

https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec

9 © 2021 Parsec Project Contributors

How To Use Parsec In Yocto

Build Configure Run Consume
Include meta-parsec, meta-
rust and meta-clang in your
layers list. Include parsec-
service into your image.

The Parsec service is a
single executable that runs
locally. It can be managed

with systemd
(recommended), or SysV

init scripts.

Parsec is configured simply
with a TOML file. Examples
are provided to connect the

service with TPM,
HSM/PKCS#11 or software

back-ends.

Use the command-line
parsec-tool if desired or

consume the APIs into your
code from languages

including Rust, C and Go,
with more to come…

https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec/README.md

https://git.yoctoproject.org/cgit/cgit.cgi/meta-security/tree/meta-parsec/README.md

10 © 2021 Parsec Project Contributors

The Developer Experience: Command-Line Example

11 © 2021 Parsec Project Contributors

The Developer Experience: Rust Example

© 2021 Parsec Project Contributors

Some Details of Parsec
Integration into Yocto

See also “Using Rust with bitbake and meta-rust” with
Steven Walter, 14:45 UTC (Presentation Room)

13 © 2021 Parsec Project Contributors

Choices For Including Rust-Based Software in Yocto

Toolchain Dependency Management

meta-rust
https://github.com/meta-rust/meta-rust

• Builds rust compiler and cargo build system from source
• Provides “crate” fetch mechanism for dependencies

meta-rust-bin
https://github.com/rust-embedded/meta-rust-bin

• Uses pre-built upstream versions of compiler and cargo
• Faster to build, but less flexible

bitbake vendoring
https://github.com/meta-rust/cargo-bitbake

• Dependencies modelled explicitly in the recipe
• Needs to be kept in sync with Cargo.toml
• Tools to auto-generate include files

cargo vendoring

• Cargo build system fetches crates by itself
• Add CARGO_DISABLE_BITBAKE_VENDORING = "1” to recipe

https://github.com/meta-rust/meta-rust
https://github.com/rust-embedded/meta-rust-bin
https://github.com/meta-rust/cargo-bitbake

14 © 2021 Parsec Project Contributors

Parsec Service Recipe (Fragment)
inherit cargo

SRC_URI += "crate://crates.io/parsec-service/${PV} \

"

CARGO_BUILD_FLAGS += " --features all-providers,cryptoki/generate-bindings,tss-esapi/generate-bindings”

DEPENDS = "tpm2-tss"

TOOLCHAIN = "clang”

PARSEC_CONFIG ?= "${S}/config.toml"

do_install_append () {

install -d -m 700 -o parsec -g parsec "${D}${libexecdir}/parsec"

install -m 700 -o parsec -g parsec "${WORKDIR}/build/target/${CARGO_TARGET_SUBDIR}/parsec" ${D}${libexecdir}/parsec/parsec

}

require parsec-service_${PV}.inc

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"SRC_URI += "file://config-tpm.toml \
"
PARSEC_CONFIG = "${WORKDIR}/config-tpm.toml"

parsec-service_%.bbappend

15 © 2021 Parsec Project Contributors

Rust Recipes In CI Pipelines

• Rust tool chain requirements can result in lengthy image build
• Use of persistent SSTATE_DIR and DL_DIR recommended
• See https://git.yoctoproject.org/cgit/cgit.cgi/meta-arm/tree/.gitlab-ci.yml

.setup:
stage: build
variables:
KAS_REPO_REF_DIR: $CI_BUILDS_DIR/persist/repos
SSTATE_DIR: $CI_BUILDS_DIR/persist/sstate
DL_DIR: $CI_BUILDS_DIR/persist/downloads

before_script:
- echo SSTATE_DIR = $SSTATE_DIR
- echo DL_DIR = $DL_DIR

https://git.yoctoproject.org/cgit/cgit.cgi/meta-arm/tree/.gitlab-ci.yml

16 © 2021 Parsec Project Contributors

Learn More

https://github.com/parallaxsecond/parsec

https://parallaxsecond.github.io/parsec-book

Get the code

Read the book

https://github.com/parallaxsecond/parsec
https://parallaxsecond.github.io/parsec-book

17 © 2021 Parsec Project Contributors

Join The Community

https://github.com/parallaxsecond/community

#parsec on CNCF https://slack.cncf.io

Every Tuesday at 16:30 (UK), 11:30 (US East), 08:30 (US West)

https://github.com/parallaxsecond/community
https://slack.cncf.io/

© 2021 Parsec Project Contributors

Q&A

