Google Android Experiences in porting, tips and
tricks
Mark Gross
April 12, 2010

Introduction and apology

* | don't have as many tricks to share as |
planned.

 This IS meant to be an talk, not a lecture.

* | work directly for the product group that is
creating the mobile chip sets and platforms

 |'ve suddenly gotten really busy lately.
 These are ugly slides, sorry.

Approximate Outline

What Linux could learn from Google Android

Google Android PM - the good and the ugly

Out of tree kernel code == /me getting good at git rebase.
Google Android Graphics — simple but still difficult (for Intel)
Performance.

Fastboot

Fastboot implemented on top of kboot

Repo, tips and tricks

SCM approaches for android

Garret, first impressions.

Hacking repo (adding a format-patch command)

Things Intel is focused on WRT Android..AFAIK.

Closing observations and babbling

What embedded Linux could learn
from Google Android

 Frameworks are important for creating
developer communities.

 User mode PM and application life cycle standards
are important.

e |[SV's need to be able to develop applications
without being system integrators and kernel
hackers Is important

* Integration enabling Iis important.
* Logcat, ADB, fastboot

Android PM the good the, meh, and
the ugly

« Good

. Its a complete solution out of the box.

. The wake lock concept in user mode is pretty cool, at least its a standard all Android
applications can follow.

. Meh (I'm not ready to say “bad” yet...)

. ABI assumed by stack (early suspend notification, wake locks)
— Early suspend is actually the one I like the least.

. The suspend notification goes all the way up into the surface flinger and helps control
graphics rendering at screen on/off time.

— Worker threads doing blocking reads on wait_for fb_sleep and wait_for_fp_wake in /sys/power.
. brakes PM for a typical Linux stack running on top of an android enabled kernel

. Ugly
. Grabbing and releasing wake locks in kernel is bad.

. You can't just have a few, you grab and release one you'll quickly end up with
wake_lock-itis throughout your kernel

Out-of tree enableing == lots of git
rebase-ing

« Our current kernel is a patched 2.6.31.6 kernel initially developed
for moblin.

« We'll move to 2.6.3x sometime this summer after it gets stable.

| rebased the patches to the
android.git.kernel.org/kernel/common.git android-2.6.32 branch to
It.
« It worked ok, only a few fix ups needed.
« Not going to scale well in the future.

« Scared that wake lock-itis patch sets making this impossible to deal
with over time.

« Gripe: why did they need to add the 2.6.32.9 patches to the
android-2.6.32 branch to common.git?

« Thanks for making he harder for me.

Google Android graphics

* |ts dumb, yet still a PIA
 Lots of 2D rendering all done in SW on CPU

* 3D Is really only used for texture blitting of the
2D buffers by the surface flinger.

 Games and NDK applications drive more
complete utilization of the HW on most of the
platforms

 Rumors of it getting overhauled on the net.

Performance

 First order hot spots for SW graphics are:
e memcpy
e Skia
« Memsetl6
« After enabling HW graphics:
e Skia
e assorted
e Oprofile
« Needed x86 enabling to work. (done.)
e Vtune.
« Works if you put my LFS /tools hack in the root FS.

Fastboot Is cool.

* Fast boot Is a USB gadget based application for
automated target update and booting.

* |t with ADB you can automate, zero touch,
validation builds prior to change set acceptance

 We implemented Fastboot as an application on
top of Kboot.

Kboot implementation of fastboot

o Starting with android.git.kernel.org/kernel/lk.qgit |
Implemented an application and gadget driver
hack that implements fast boot within kboot.

* Note: there is also a fast boot implementation in
bootable/bootloader/legacy

« Fastboot host application is in system/core/fastboot
o |t works pretty well.

o After using It for a short time it becomes easy to
see why google insists on it for anything they
run in their lab.

Repo tricks

Repo forall is useful

Environment variables REPO_PROJECT,
REPO_PATH, REPO REMOTE

Read some python see .repo/repo/commands/forall.py

Export REPO_TRACE=1 is handy to see what git
commands are happening

Repo manifest -r -o tag.xml
Its just python code.

Use ipython and python debug tricks to explore what's
goping on In it

Repo tricks

* Repo forall -c 'git diff remote/branch’

* Repo forall -c '‘echo $REPO_PATH;git remote
-V’

* In AOSP to build a script to set AOSP upstream
remotes from which to compare and merge with.

 Repo manifest -r -o my-tag-file.xml

Hacking repo

| have a patch to repo I'm trying to get cleaned
up an accepted. It does a format patch off a
“tag” manifest.xml file.

Repo is just some python code.
Its pretty fun to hack on.

Repo Is eventually moving to git subproject
manifests and away from the xml files.

| would like to see better project branching
support exposed through repo and garret.

SCM options:

» Just use repo forall to aggregate the git
projects, and lay down test and release
branches.

e Set up repo mirror + manifest
* Repo forall -c'git branch test;
* Repo forall -c'git status'

e Use garret
* |ts becoming “the android way of doing things”

SCM garret fist Impressions:

Takes getting used too

Its focus Is on integration.

Really locks down the integration process
e A good thing

 Integration is hard and garret helps.

ts not clear yet how to use It to do topic branches, or
now to deal with multiple product / customer branches.

Hacking the manifest file is painful

like it enough, but its not for everything.

When repo / garret fall over:

 Merge conflicts are a pain

* |t will stall out or freeze all together if not given
enough resources, when 2 dozen folks are
hitting It with repo syncs and uploads.

e Gilve the server a lot of headroom
e Doesn't enable experimental collaboration

What Intel I1s focused on WRT
Android

Runs best on IA.

* Re-use existing optimizations from Chrome

Full featured Android BSP's for Intel UMG
hardware.

Get x86 fully represented and supported in
upstream AOSP.

Update generic_x86 AOSP toolchain
Collaborate as possible with google.

Other observations

e LInux mindsets sometimes take a while to
adjust to android.

« BSP's reaching up into the user mode stack are
hard to port to android.

* Google pretty much owns it, and you need a
business relationship with them if you care
about branding or their marketplace access.

* Android PM is not just about wake-locks.
* Lots of new tools, and ways of doing things

Bringing up a new device, list of
things to do:

Bring up fastboot

Harden ADB

Bring up the home screen.

Set up a garret or git-pool mirror, going

« Use repo manifest -r -o tag-date.xml as a way to specify a
snapshot.

Automate your acceptance testing!

* |Its too easy to break a build or regress the system with multiple
teams “helping”

« Last week was difficult in that way.

Odds and ends

Really look at all the stuff up on
android.git.kernel.org There are some
Interesting things there

» Kernels, toolchains, tools, and of course Android.
Make file phony targets of note
 Showcommands, sdk

I'm still not good at the Android.mk hacking.

build/envsetup.sh is nice.
« Mm is sometimes really handy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

