

Google Android Experiences in porting, tips and
tricks

Mark Gross
April 12, 2010

Introduction and apology

● I don't have as many tricks to share as I
planned.

● This is meant to be an talk, not a lecture.
● I work directly for the product group that is

creating the mobile chip sets and platforms
● I've suddenly gotten really busy lately.

● These are ugly slides, sorry.

Approximate Outline

● What Linux could learn from Google Android

● Google Android PM - the good and the ugly

● Out of tree kernel code == /me getting good at git rebase.

● Google Android Graphics – simple but still difficult (for Intel)

● Performance.

● Fastboot

● Fastboot implemented on top of kboot

● Repo, tips and tricks

● SCM approaches for android

● Garret, first impressions.

● Hacking repo (adding a format-patch command)

● Things Intel is focused on WRT Android..AFAIK.

● Closing observations and babbling

What embedded Linux could learn
from Google Android

● Frameworks are important for creating
developer communities.
● User mode PM and application life cycle standards

are important.
● ISV's need to be able to develop applications

without being system integrators and kernel
hackers is important

● Integration enabling is important.
● Logcat, ADB, fastboot

Android PM the good the, meh, and
the ugly

● Good
● Its a complete solution out of the box.

● The wake lock concept in user mode is pretty cool, at least its a standard all Android
applications can follow.

● Meh (I'm not ready to say “bad” yet...)
● ABI assumed by stack (early suspend notification, wake locks)

– Early suspend is actually the one I like the least.

● The suspend notification goes all the way up into the surface flinger and helps control
graphics rendering at screen on/off time.

– Worker threads doing blocking reads on wait_for_fb_sleep and wait_for_fp_wake in /sys/power.

● brakes PM for a typical Linux stack running on top of an android enabled kernel

● Ugly
● Grabbing and releasing wake locks in kernel is bad.

● You can't just have a few, you grab and release one you'll quickly end up with
wake_lock-itis throughout your kernel

Out-of tree enableing == lots of git
rebase-ing

● Our current kernel is a patched 2.6.31.6 kernel initially developed
for moblin.
● We'll move to 2.6.3x sometime this summer after it gets stable.

● I rebased the patches to the
android.git.kernel.org/kernel/common.git android-2.6.32 branch to
it.
● It worked ok, only a few fix ups needed.

● Not going to scale well in the future.

● Scared that wake_lock-itis patch sets making this impossible to deal
with over time.

● Gripe: why did they need to add the 2.6.32.9 patches to the
android-2.6.32 branch to common.git?
● Thanks for making he harder for me.

Google Android graphics

● Its dumb, yet still a PIA
● Lots of 2D rendering all done in SW on CPU
● 3D is really only used for texture blitting of the

2D buffers by the surface flinger.
● Games and NDK applications drive more

complete utilization of the HW on most of the
platforms

● Rumors of it getting overhauled on the net.

Performance

● First order hot spots for SW graphics are:
● memcpy
● skia
● Memset16

● After enabling HW graphics:
● Skia
● assorted

● Oprofile
● Needed x86 enabling to work. (done.)

● Vtune.
● Works if you put my LFS /tools hack in the root FS.

Fastboot is cool.

● Fast boot is a USB gadget based application for
automated target update and booting.

● It with ADB you can automate, zero touch,
validation builds prior to change set acceptance

● We implemented Fastboot as an application on
top of Kboot.

Kboot implementation of fastboot

● Starting with android.git.kernel.org/kernel/lk.git I
implemented an application and gadget driver
hack that implements fast boot within kboot.
● Note: there is also a fast boot implementation in

bootable/bootloader/legacy
● Fastboot host application is in system/core/fastboot

● It works pretty well.
● After using it for a short time it becomes easy to

see why google insists on it for anything they
run in their lab.

Repo tricks

● Repo forall is useful
● Environment variables REPO_PROJECT,

REPO_PATH, REPO_REMOTE
● Read some python see .repo/repo/commands/forall.py
● Export REPO_TRACE=1 is handy to see what git

commands are happening
● Repo manifest -r -o tag.xml
● Its just python code.
● Use ipython and python debug tricks to explore what's

goping on in it

Repo tricks

● Repo forall -c 'git diff remote/branch'
● Repo forall -c 'echo $REPO_PATH;git remote

-v'
● In AOSP to build a script to set AOSP upstream

remotes from which to compare and merge with.

● Repo manifest -r -o my-tag-file.xml

Hacking repo

● I have a patch to repo I'm trying to get cleaned
up an accepted. It does a format patch off a
“tag” manifest.xml file.

● Repo is just some python code.
● Its pretty fun to hack on.
● Repo is eventually moving to git subproject

manifests and away from the xml files.
● I would like to see better project branching

support exposed through repo and garret.

SCM options:

● Just use repo forall to aggregate the git
projects, and lay down test and release
branches.
● Set up repo mirror + manifest
● Repo forall -c'git branch test;
● Repo forall -c'git status'
● …

● Use garret
● Its becoming “the android way of doing things”

SCM garret fist impressions:

● Takes getting used too
● Its focus is on integration.
● Really locks down the integration process

● A good thing
● Integration is hard and garret helps.

● Its not clear yet how to use it to do topic branches, or
how to deal with multiple product / customer branches.

● Hacking the manifest file is painful
● I like it enough, but its not for everything.

When repo / garret fall over:

● Merge conflicts are a pain
● It will stall out or freeze all together if not given

enough resources, when 2 dozen folks are
hitting it with repo syncs and uploads.
● Give the server a lot of headroom

● Doesn't enable experimental collaboration

What Intel is focused on WRT
Android

● Runs best on IA.
● Re-use existing optimizations from Chrome

● Full featured Android BSP's for Intel UMG
hardware.

● Get x86 fully represented and supported in
upstream AOSP.

● Update generic_x86 AOSP toolchain
● Collaborate as possible with google.

Other observations

● Linux mindsets sometimes take a while to
adjust to android.

● BSP's reaching up into the user mode stack are
hard to port to android.

● Google pretty much owns it, and you need a
business relationship with them if you care
about branding or their marketplace access.

● Android PM is not just about wake-locks.
● Lots of new tools, and ways of doing things

Bringing up a new device, list of
things to do:

● Bring up fastboot

● Harden ADB

● Bring up the home screen.

● Set up a garret or git-pool mirror, going
● Use repo manifest -r -o tag-date.xml as a way to specify a

snapshot.

● Automate your acceptance testing!
● Its too easy to break a build or regress the system with multiple

teams “helping”
● Last week was difficult in that way.

Odds and ends

● Really look at all the stuff up on
android.git.kernel.org There are some
interesting things there
● Kernels, toolchains, tools, and of course Android.

● Make file phony targets of note
● Showcommands, sdk

● I'm still not good at the Android.mk hacking.
● build/envsetup.sh is nice.

● Mm is sometimes really handy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

