
Porting the Linux Kernel to X86 MID
Platforms

April, 2010

Jacob Pan

Intel Open Source Technology Center

Embedded Linux Conference 2010

22
Software and Services
Group 2

Intel Confidential

Agenda

Why porting is needed? Our goals
– X86 PC compatibility

– Moorestown as an embedded platform

The challenges
– Booting

– Device enumeration

– Interrupts

– Timers

The Changes and solutions
– Simple Firmware Interface (SFI) specification

– PCI shim

– IOAPIC emulation

– Abstractions, x86_init, legacy_pic, etc.

1978

2010

33
Software and Services
Group 3

Intel Confidential

X86 PC compatibility

Hardware
– x86 core
– North/South bridges, legacy devices (still needed for booting)

Firmware
– BIOS

Peripheral bus
– PCI/PCI-E

Abstraction interface standard
– ACPI

44
Software and Services
Group 4

Intel Confidential

Introduction to Moorestown

Moorestown is Intel's low power IA based Mobile Internet Device (MID)
platform

A two chip solution (maybe more):
– Lincroft: the CPU complex with integrated graphics and memory controller
– Langwell; I/O hub with peripherals such as SPI, I2C, SDIO/MMC, USB host,

USB OTG
– Power Management IC (PMIC) for power delivery control, mixed signal,

GPIO, audio

55
Software and Services
Group 5

Intel Confidential

What remains compatible with a PC?

• Atom based X86 CPU core

• PCI (partially emulated)

• APIC (IOAPIC partially emulated)

66
Software and Services
Group 6

Intel Confidential

What is new to Moorestown MID?

Moorestown deviates from x86 PC platform

• No real mode in CPU core

• No BIOS, i.e. int calls, SMI/SCI

• No ACPI

• No legacy devices, e.g. i8259 PIC, 8254 PIT

• No PCI on Langwell (I/O hub)

• No real IOAPIC

• No PC compatible platform timers, i.e. HPET, PM timers, PIT, real
RTC

• No I/O ports

77
Software and Services
Group 7

Intel Confidential

Kernel enabling challenges

The goal: maintain arch/x86 as a unified platform
– kernel$ tree -d arch/arm/ -L 1 | wc -l 86
– On x86, xen, lguest, and the rest.

Booting
– No existing boot loaders to use due to lack of BIOS and real-mode

Device enumeration
– On chip devices, PCI, statically I/O mapped
– Off chip, non-probable devices

Interrupt routing and delivery
– Utilizing local and IO APIC

Timers
– Use legacy replacement timers

88
Software and Services
Group 8

Intel Confidential

Make it to boot

Firmware hands off to Linux kernel in
protected mode.

A small loader is added to
– Bridge between FW and bzImage p-mode

entry condition
– Setup boot parameters required by the

x86 boot protocol
• E820 memory map
• Hardware sub-architecture ID (newly added

for Moorestown)

IA32 firmware

bzImage
(real mode)

startup_32
(protected mode)

bootstub

99
Software and Services
Group 9

Intel Confidential

Passing boot information to the kernel

Existing methods on x86 PC include ACPI, BIOS tables (EBDA, MP table), PCI
configuration space, DMI, etc.

Introduce Simple Firmware Interface (SFI): a method for platform firmware to
export static tables to the operating system (OS).

Stored between 0x000E0000

and 0x000FFFFF

1010
Software and Services
Group 10

Intel Confidential

Device Enumeration Methods

System devices (system timers)
– SFI tables

On-chip devices (graphics, USB, SD host controllers, etc):
– PCI based with mix of real and fake PCI devices
– Use PCI header to provide memory mapped IO space and IRQ routing

Non-probable platform devices (SPI, I2C, GPIO)
– SFI tables

1111
Software and Services
Group 11

Intel Confidential

Device enumeration and driver loading flow

i386_start_kernel

Read HW sub-arch ID

Moorestown platform setup
(parse SFI tables for

System devices, SPI, I2C,
 Platform devices
PCI MMCFG base

Register platform info)

MRST?

System device driver init

PCI device probing

PCI drivers loading
 driver probe function called

 bind with its device

SPI, I2C, Platform bus init
 driver probe function called

 bind with its device
(via platform info)

1212
Software and Services
Group 12

Intel Confidential

PCI

True PCI in the north complex
– e.g. Graphics engine

Fake PCI covers all south complex devices
– e.g. USB, SD/MMC, NAND

PCI shim (Fake PCI MMCFG space written by the FW in main memory)
– Contains both true and fake PCI devices
– MMCFG location is stored in SFI table

1313
Software and Services
Group 13

Intel Confidential

PCI shim pros and cons

Pros:
– Leverage the existing device enumeration method
– Reuse generic PCI drivers

Cons:
– Can not detect device presence automatically, increased FW maintenance

burden
– PCI shim is read-only therefore can not handle writes, e.g. BAR sizing

• Added a new PCI-E extended capability called “Fixed BAR” so that the driver reads
the BAR sizes from extended cap then update the fake BAR

– Mixed true and fake PCI functions under the same PCI device in order to
save memory

1414
Software and Services
Group 14

Intel Confidential

Interrupts

Routing
– Interrupt Routing information are platform specific and obtained from

system firmware via PCI MMCFG space and SFI tables
– IOAPIC redirection tables used to establish mapping between IRQ# and

vectors

Delivery methods
– CPU Local interrupts (local APIC timers, thermal events)
– True PCI MSI (graphics)
– FSB delivery by FW emulated MSIs (on-chip devices)
– Logical delivery via GPIO IRQ chip

• Use chained irq handler

Abstraction added
– legacy_pic

1515
Software and Services
Group 15

Intel Confidential

Interrupt delivery

CPU
(APIC)

Local source

I/O hub on chip
devices

spi/i2c
devices

GPIO
controller demux

IO APIC
(emulated)

IRQ

1616
Software and Services
Group 16

Intel Confidential

X86 PC

Timers

On X86PC, typically broadcast timer is needed since local APIC
timers stop working in C2 and deeper states

– Typical PC has per-cpu local APIC timer plus HPET
– Moorestown can use per-cpu local APIC timer plus APB timer

cpu0 cpu1

Lapic timer** Lapic timer**

HPET*
(always on

broadcast timer and
 clocksource)

* High precision event timer
** stop at C2 or deeper CPU states

1717
Software and Services
Group 17

Intel Confidential

X86 MID system timer options

No more broadcast timer!
– Per CPU APB timer
– Per CPU local APIC timers (always on)

X86 MID

cpu0 cpu1

APB timerAPB timer

X86 MID

cpu0 cpu1

Lapic timer* Lapic timer* CDMI link

* if always-on (ARAT)

1818
Software and Services
Group 18

Intel Confidential

Code Change

Step 1. Clean up existing code to make room for smooth
integration of Moorestown specific changes

Step 2. Add Moorestown specific enabling code

1919
Software and Services
Group 19

Intel Confidential

Integration with existing x86 code

First attempt is to add a set of platform feature flags so that we
can workaround non-PC compatible code. Spreads out to too
many places. e.g.

- probe_roms();

+ if (platform_has(X86_PLATFORM_FEATURE_BIOS))

+ probe_roms();

… ...

- io_apic_irqs = ~PIC_IRQS;

+ if (!platform_has(X86_PLATFORM_FEATURE_8259))

+ io_apic_irqs = ~0;

+ else

+ io_apic_irqs = ~PIC_IRQS;

2020
Software and Services
Group 20

Intel Confidential

A much better approach: x86_init

Thomas Gleixner added x86_init layer (x86_cpuinit and x86_platform included)
to abstract the common init functions for all x86 platforms.

x86_init
(with arch specifics)

x86_init
(default PC compatible functions)

mrst kvm numaq olpc

setup_arch
(override x86_init function pointers)

2121
Software and Services
Group 21

Intel Confidential

More abstractions used

Abstractions such as x86_init, machine_ops, and legacy_pic are used to
deal with platform variations at runtime.

– BIOS related
– Timers
– RTC
– Machine power on/off
– Legacy PIC

2222
Software and Services
Group 22

Intel Confidential

Benefit of using abstractions

Maintain arch/x86 as a unified architecture

Less run-time checking (similar to have self-modifying code for
each sub-arch), example:

- pcibios_fixup_irqs();

+ x86_init.pci.fixup_irqs();

2323
Software and Services
Group 23

Intel Confidential

The corner cases

There are cases sensitive to the ordering, not so easily fit in
abstractions based on existing flow. e.g.

IOAPIC early setup
– Standard PC relies on legacy devices during early boot, IOAPIC is

normally set up later
– Moorestown needs IOAPIC to be ready early for system timer

interrupts.

Ideally, we can move IOAPIC setup early on most modern PCs
such that there is no need to do special setup for x86 MID.

2424
Software and Services
Group 24

Intel Confidential

Current Status

Moorestown x86 enabling patches has been merged upstream
since 2.6.34-rc

2525
Software and Services
Group 25

Intel Confidential

Questions?

2626
Software and Services
Group 26

Intel Confidential

Backup

2727
Software and Services
Group 27

Intel Confidential

Resources

– http://simplefirmware.org/

2828
Software and Services
Group 28

Intel Confidential

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and
plans at any time, without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights are protected.

2929
Software and Services
Group 29

Intel Confidential

	<insert Presentation Title here>
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Questions?
	Backup
	Resources
	Legal Information
	Slide 29

