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Overview 🪟

Short Overview:
 TrustZone & OP-TEE
 Solved Use cases:

 Secret storage: PKCS#11 TA
 TPM: Microsoft firmware TPM

 Securing OP-TEE
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TrustZone (32-bit)

 ARM hardware feature
 Processor switches worlds

 Nomal world, running i.e. Linux (REE)
 Secure world, running i.e. OP-TEE

 Secure world not accessible from 
normal world

 Access control for peripherals (serial, 
SPI, I2C,…) is SoC-specific

Normal 
world

Secure 
world

Secure Monitor
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OP-TEE

 Open Portable Trusted Execution Environment
 Implementation of the GP TEE specification
 BSD 2/3-clause licensed
 Provides an execution environment:

 No scheduling
 Different concurrency models (per Application)



 6/27

OP-TEE Trusted Applications (TA) 💼

 💡Idea → use TA for sensitive computations and storage, application 
within Linux

 Applications split into REE (Linux) and TEE (OP-TEE) part
 TEE part of the application is called Trusted Application (TA), runs 

within OP-TEE
 Libteec (Tee Client Library) implements interface for TA 

communication
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TA communication flow 💬

OP-TEE

Trusted 
Application

Client 
Application

Linux 
Interface

Secure Monitor
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OP-TEE features 🌟

 Using Replay Protected Memory Blocks (eMMC/NVME feature) for 
rollback protected storage

 Drivers for common DDR access firewalls (TZC380, TZC400)
 Upstream kernel driver maintained by OP-TEE maintainers
 Platform Support for: i.MX, Layerscape, STM32MP1, qemu, hikey, 

raspberry pi 3, rockchip and TI AMxx
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OP-TEE persistent storage 💾

 OP-TEE → TEE-Supplicant
 OP-TEE encrypts and authenticates data using Unique Key
 GP TEE Persistent storage API for TA
 Tee-Supplicant Storage (no OP-TEE storage driver)

 Access to eMMC → RPMB (RPMB FS)
 Store within Linux Filesystem (REE FS)
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Use cases

 TPM (PCR, Sealing, Attestation)
 PKCS#11 (i.e. Signing, Device Authentication)
 Trusted Keys (Linux Keyring Sealing, under discussion)
 Payment verification?
 Content decryption (DRM )?🤦
 License Management?

https://github.com/microsoft/MSRSec/tree/master/TAs/optee_ta/fTPM
https://github.com/etienne-lms/optee_os/tree/sks-to-pkcs11
https://lore.kernel.org/linux-security-module/1600350398-4813-1-git-send-email-sumit.garg@linaro.org/T/#t
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PKCS#11 primer

 Standard Programming Interface
 Hardware Secure Modules (Yubikey, Nitrokey,…)

 i.e. generate Public-Private Keypair, use private key to sign data
 Private key marked unexportable, cannot leave the device
 Supported in:

 Chromium, nginx, SSH, wpa_supplicant, curl, evolution, Linux module 
signing, FIT images, RAUC, code signing

 Usually via OpenSSL/GnuTLS
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PKCS#11 Setup

 PKCS#11 OP-TEE branch from Etienne Carriere
 PKCS#11 Client branch from Etienne
 Compile with CFG_PKCS11_TA=y
 Use resulting libckteec.so as PKCS#11 module
 TA is being upstreamed into OP-TEE OS

https://github.com/etienne-lms/optee_os/tree/sks-to-pkcs11
https://github.com/etienne-lms/optee_client/tree/sks-to-pkcs11
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PKCS#11 Demo Time

Demo Time
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Trusted Platform Module (TPM) Primer

 Trusted Platform Module (TPM)
 Traditionally component on the 

board, connected via SPI/I2C
 Nowadays firmware TPM 2.0 on PCs
 Usage: measure boot → unlock 

trusted keys on correct bootup

TPM module for mainboards
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Microsoft Firmware TPM Setup

 kernel driver: tpm_ftpm_tee
 TA: MSRSec fTPM
 Setup:

 Enable kernel driver
 Build ftpm with OP-TEE devkit
 Add device tree node

 tpm0 device appears ✨

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/tpm/tpm_ftpm_tee.c
https://github.com/microsoft/MSRSec/tree/master/TAs/optee_ta/fTPM
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TPM DEMO Time

Demo Time
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TA compilation 🚧

compile OP-TEE TA devkit

TA source

TA build system compiled TA

 OP-TEE development kit
 Compile external TAs
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TA Signing 🖊️

 Public key compiled into OP-TEE  🔑
 TA signed after compilation  🖊️
 OP-TEE verifies TA signature on load ✔️
 TA storage locations:

 Built into OP-TEE
 Stored in Linux FS
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Securing OP-TEE

 Required components:
 Hardware Random Number Generator (RNG) 🔀
 Unique Key only accessible from secure world (HUK) 🔑
 DDR/SRAM Firewall 🔥🧱
 Device bus access policies 📃

 SoC dependent integration:
 Secure Boot? 🔐
 Bootloader? 🥾
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Securing OP-TEE on i.MX6: RNG 🔀

 i.MX Cryptographic Accelerator and Assurance Module (CAAM)
 CAAM has an internal Random Number Generator (RNG)
 OP-TEE with runtime CAAM Support:

 random numbers directly from CAAM

 OP-TEE with CAAM boot-time support:
 Seed Software RNG from CAAM
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Securing OP-TEE on i.MX6: Hardware Unique Key 🔑

 Every i.MX6 has a unique one-time programmable key (OTPMK)
 CAAM can provide a hash over this key for verification
 Hash different for normal/secure world
 Only with High Assurance Boot (HAB)!
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Securing OP-TEE on i.MX6: DDR Firewall 🔥🧱

 i.MX6 has a TrustZone Controller 380 (TZC-380)
 Derive TZC-380 configuration from OP-TEE configuration
 Lock configuration after setup
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Securing OP-TEE on i.MX6: Device Bus Policies 📃

 i.MX6 Central Security Unit (CSU)
 Access policies for DMA masters (GPU, Ethernet, PCIe,…)
 Done for i.MX6UL, others are easy!
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Integration: HAB for Secure Boot  🔐

HAB Bootloader Kernel

OP-TEE

Root FS

 HAB ROM verifies bootloader, loads OP-TEE
 Verify Kernel via FIT image?
 Verify RootFS with DM Verity?
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Integration: Bootloader 

 When do you load OP-TEE (for i.MX6)?
 Before the kernel?
 Early during Startup of the bootloader?

 SoC dependant:
 i.MX6 leaves OP-TEE loading to the bootloader
 STM32MP1 uses TF-A, OP-TEE loading only supported through TF-A
 i.MX8MQ also uses TF-A
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Thanks

 To Jens Wiklander, Jerome Frossier and Etienne Carriere for review, 
input and maintenance on OP-TEE

 Etienne for the creation of the PKCS#11 TA & Library, Ricardo Salveti 
for review and additional features

 NXP: Clément Faure, Cedrix Neveux and Silvano Dininno for 
contribution of the CAAM driver

 To our customers for funding the work
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Conclusion

🚀

Go and use OP-TEE!
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