
https://www.pengutronix.de

OP-TEE is ready, lets use it!

OP-TEE use cases and platform readyness

Rouven Czerwinski – r.czerwinski@pengutronix.de

 2/27

About me 👨

 Rouven Czerwinski
 Pengutronix e.K.

 Emantor
 rcz@pengutronix.de
OP-TEE

 System Integration
Testing

 3/27

Overview 🪟

Short Overview:
 TrustZone & OP-TEE
 Solved Use cases:

 Secret storage: PKCS#11 TA
 TPM: Microsoft firmware TPM

 Securing OP-TEE

 4/27

TrustZone (32-bit)

 ARM hardware feature
 Processor switches worlds

 Nomal world, running i.e. Linux (REE)
 Secure world, running i.e. OP-TEE

 Secure world not accessible from
normal world

 Access control for peripherals (serial,
SPI, I2C,…) is SoC-specific

Normal
world

Secure
world

Secure Monitor

 5/27

OP-TEE

 Open Portable Trusted Execution Environment
 Implementation of the GP TEE specification
 BSD 2/3-clause licensed
 Provides an execution environment:

 No scheduling
 Different concurrency models (per Application)

 6/27

OP-TEE Trusted Applications (TA) 💼

 💡Idea → use TA for sensitive computations and storage, application
within Linux

 Applications split into REE (Linux) and TEE (OP-TEE) part
 TEE part of the application is called Trusted Application (TA), runs

within OP-TEE
 Libteec (Tee Client Library) implements interface for TA

communication

 7/27

TA communication flow 💬

OP-TEE

Trusted
Application

Client
Application

Linux
Interface

Secure Monitor

 8/27

OP-TEE features 🌟

 Using Replay Protected Memory Blocks (eMMC/NVME feature) for
rollback protected storage

 Drivers for common DDR access firewalls (TZC380, TZC400)
 Upstream kernel driver maintained by OP-TEE maintainers
 Platform Support for: i.MX, Layerscape, STM32MP1, qemu, hikey,

raspberry pi 3, rockchip and TI AMxx

 9/27

OP-TEE persistent storage 💾

 OP-TEE → TEE-Supplicant
 OP-TEE encrypts and authenticates data using Unique Key
 GP TEE Persistent storage API for TA
 Tee-Supplicant Storage (no OP-TEE storage driver)

 Access to eMMC → RPMB (RPMB FS)
 Store within Linux Filesystem (REE FS)

 10/27

Use cases

 TPM (PCR, Sealing, Attestation)
 PKCS#11 (i.e. Signing, Device Authentication)
 Trusted Keys (Linux Keyring Sealing, under discussion)
 Payment verification?
 Content decryption (DRM)?🤦
 License Management?

https://github.com/microsoft/MSRSec/tree/master/TAs/optee_ta/fTPM
https://github.com/etienne-lms/optee_os/tree/sks-to-pkcs11
https://lore.kernel.org/linux-security-module/1600350398-4813-1-git-send-email-sumit.garg@linaro.org/T/#t

 11/27

PKCS#11 primer

 Standard Programming Interface
 Hardware Secure Modules (Yubikey, Nitrokey,…)

 i.e. generate Public-Private Keypair, use private key to sign data
 Private key marked unexportable, cannot leave the device
 Supported in:

 Chromium, nginx, SSH, wpa_supplicant, curl, evolution, Linux module
signing, FIT images, RAUC, code signing

 Usually via OpenSSL/GnuTLS

 12/27

PKCS#11 Setup

 PKCS#11 OP-TEE branch from Etienne Carriere
 PKCS#11 Client branch from Etienne
 Compile with CFG_PKCS11_TA=y
 Use resulting libckteec.so as PKCS#11 module
 TA is being upstreamed into OP-TEE OS

https://github.com/etienne-lms/optee_os/tree/sks-to-pkcs11
https://github.com/etienne-lms/optee_client/tree/sks-to-pkcs11

 13/27

PKCS#11 Demo Time

Demo Time

 14/27

Trusted Platform Module (TPM) Primer

 Trusted Platform Module (TPM)
 Traditionally component on the

board, connected via SPI/I2C
 Nowadays firmware TPM 2.0 on PCs
 Usage: measure boot → unlock

trusted keys on correct bootup

TPM module for mainboards

 15/27

Microsoft Firmware TPM Setup

 kernel driver: tpm_ftpm_tee
 TA: MSRSec fTPM
 Setup:

 Enable kernel driver
 Build ftpm with OP-TEE devkit
 Add device tree node

 tpm0 device appears ✨

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/tpm/tpm_ftpm_tee.c
https://github.com/microsoft/MSRSec/tree/master/TAs/optee_ta/fTPM

 16/27

TPM DEMO Time

Demo Time

 17/27

TA compilation 🚧

compile OP-TEE TA devkit

TA source

TA build system compiled TA

 OP-TEE development kit
 Compile external TAs

 18/27

TA Signing 🖊️

 Public key compiled into OP-TEE 🔑
 TA signed after compilation 🖊️
 OP-TEE verifies TA signature on load ✔️
 TA storage locations:

 Built into OP-TEE
 Stored in Linux FS

 19/27

Securing OP-TEE

 Required components:
 Hardware Random Number Generator (RNG) 🔀
 Unique Key only accessible from secure world (HUK) 🔑
 DDR/SRAM Firewall 🔥🧱
 Device bus access policies 📃

 SoC dependent integration:
 Secure Boot? 🔐
 Bootloader? 🥾

 20/27

Securing OP-TEE on i.MX6: RNG 🔀

 i.MX Cryptographic Accelerator and Assurance Module (CAAM)
 CAAM has an internal Random Number Generator (RNG)
 OP-TEE with runtime CAAM Support:

 random numbers directly from CAAM

 OP-TEE with CAAM boot-time support:
 Seed Software RNG from CAAM

 21/27

Securing OP-TEE on i.MX6: Hardware Unique Key 🔑

 Every i.MX6 has a unique one-time programmable key (OTPMK)
 CAAM can provide a hash over this key for verification
 Hash different for normal/secure world
 Only with High Assurance Boot (HAB)!

 22/27

Securing OP-TEE on i.MX6: DDR Firewall 🔥🧱

 i.MX6 has a TrustZone Controller 380 (TZC-380)
 Derive TZC-380 configuration from OP-TEE configuration
 Lock configuration after setup

 23/27

Securing OP-TEE on i.MX6: Device Bus Policies 📃

 i.MX6 Central Security Unit (CSU)
 Access policies for DMA masters (GPU, Ethernet, PCIe,…)
 Done for i.MX6UL, others are easy!

 24/27

Integration: HAB for Secure Boot 🔐

HAB Bootloader Kernel

OP-TEE

Root FS

 HAB ROM verifies bootloader, loads OP-TEE
 Verify Kernel via FIT image?
 Verify RootFS with DM Verity?

 25/27

Integration: Bootloader

 When do you load OP-TEE (for i.MX6)?
 Before the kernel?
 Early during Startup of the bootloader?

 SoC dependant:
 i.MX6 leaves OP-TEE loading to the bootloader
 STM32MP1 uses TF-A, OP-TEE loading only supported through TF-A
 i.MX8MQ also uses TF-A

 26/27

Thanks

 To Jens Wiklander, Jerome Frossier and Etienne Carriere for review,
input and maintenance on OP-TEE

 Etienne for the creation of the PKCS#11 TA & Library, Ricardo Salveti
for review and additional features

 NXP: Clément Faure, Cedrix Neveux and Silvano Dininno for
contribution of the CAAM driver

 To our customers for funding the work

 27/27

Conclusion

🚀

Go and use OP-TEE!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

