
THE GROWTH  
OF ANDROID
IN EMBEDDED
SYSTEMS
Benjamin Zores
Android Builder Summit 2014
1st May 2014 - San Jose, USA

These slides are made available o you under Creative Commons Share-Alike 3.0 license.
The full terms of this license are available here:
https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc., PLEASE READ:
- This slide must remain as-is in this specific location (slide #2), 

everything else you are free to change; including the logo ;-)
- Use of figures in other documents must feature the below “Originals at” URL  

immediately under that figure and the below copyright notice where appropriate.
- You are FORBIDDEN from using the default slide #3 as-is or any of its contents.

(C) Copyright 2014 - Opersys inc.
These slides are created by: Benjamin Zores
Originals at: http://www.opersys.com/community/docs

https://creativecommons.org/licenses/by-sa/3.0/
http://www.opersys.com/community/docs

Benjamin 
Zores

benjaminzores
@gxben
#Benjamin Zores

http://fr.linkedin.com/in/benjaminzores/
https://twitter.com/gxben
https://plus.google.com/u/0/+BenjaminZores

 Embedded Android  
 Karim Yaghmour, O’Reilly - Mar 2013

 Android 4: Fondements Internes 
 Benjamin Zores, Ed. Diamond - Q3’2014

The Android

Operating System

Android Chronology

• Early development at Android Inc. 
in early 2000s. 

• Android Inc. got purchased by Google in
2005 (not Linux-based at this time). 

• Architecture revamping lead to HTC G1  
first Android smartphone in 2008. 

• You know the rest ;-)

Android in Embedded Systems

• The industry is (fortunately) not only 
composed of smartphones and tablets ;-) 

• 34% of embedded engineers are  
considering using Android in 2013.  

• May sounds appealing for 
domestic use markets (STB, IVI …) 

• Under the hood, Android however can be 
a burden for device manufacturers.

NAME VERSION SDK RELEASE
DATE

KERNEL
VERSION

SDK API NDK API
N/A 1.0 September 2008 2.6.25 1 N/A

PETIT FOUR 1.1 February 2009 2.6.25 2 N/A
CUPCAKE 1.5 April 2009 2.6.27 3 1

DONUT 1.6 September 2009 2.6.27 4 2

ECLAIR
2.0 October 2009 2.6.29 5 2

2.0.1 December 2009 2.6.29 6 2
2.1 January 2010 2.6.29 7 3

FROYO 2.2 May 2010 2.6.32 8 4

GINGERBREAD 2.3 - 2.3.2 November 2010 2.6.35 9 5
2.3.3 - 2.3.7 February 2011 2.6.35 10 5

HONEYCOMB
3.0 February 2011 2.6.36 11 6

3.1.x May 2011 2.6.36 12 6
3.2.x June 2011 2.6.36 13 6

ICE CREAM
SANDWICH

4.0 - 4.0.2 October 2011 3.0.1 14 7
4.0.3 - 4.0.4 December 2011 3.0.1 15 7

JELLY BEAN
4.1.1 - 4.1.2 June 2012 3.0.31 16 8

4.2 November 2012 3.0.31 17 8
4.3 July 2013 3.0.31 18 9

KIT KAT 4.4 October 2013 3.4.0 19 9

Releases History

Android Fragmentation (Apr. 14)

VERSION CODENAME API DISTRIBUTION

2.2 Froyo 8 1.1%

2.3.X Gingerbread 10 17.8%

3.2 Honeycomb 13 0.1%

4.0.X Ice Cream 
Sandwich 15 14.3%

4.1.X

Jelly Bean

16 34.4%

4.2.X 17 18.1%

4.3 18 8.9%

4.4 KitKat 19 5.3%

A Life

Without GNU

Unique System & Software Architecture

• Android is based on modified Linux kernel 
and 300+ OpenSource software
components. 

• There ends the ressemblance with any other 
embedded and/or desktop Linux
distribution. 

• Redesign or replacement of fundamental
building blocks 

• Got rid of Glibc, X.org / Wayland, Busybox, 
PulseAudio, GStreamer, GTK / Qt …

“Proprietary” Development Model
• Often referred to as « clopen » 

(for closed/open)
• NOT developed in a community way.
• Sources drop depends on Google’s

willingness to share. 

• Google got rid of (L)GPL in favor of 
Apache/MIT/BSD licenses.

• Safe solution for companies to build
devices without fear of further legal
complications.

A Life Without GNU

Mobile-Targeted Kernel

• Google introduced several « Androidisms » 
to vanilla Linux kernel.  

• Agressive Power Management Policy
• WakeLocks, Early Suspend …
• Desktop follows the « always-on » policy.
• Android does the opposite.  

• Binder IPC Message Bus

Java Application Framework

• Java is quite unpopular with embedded
developers.

• Slow, resource consuming, hard to debug, 
heavy and complicated to deploy. 

• Google introduced its own bytecode: Dalvik. 

• Amazing Zygote app server:
• Framework (2000+ classes) is loaded 

once and for all in memory.
• Apps are spawned by Zygote with copy-

on-write methods, optimizing resources
usage.

Dealing With

 Embedded Linux OS

Dealing with Embedded Linux OS
• Embedded Linux available customizations  

can come in handy. 

• Diversity of commercial providers
• Windriver, Montavista, Mentor Graphics …

• DIY OpenSource Embedded Frameworks
• The Yocto Project, OpenEmbedded, Buildroot, LTIB …

• SoC vendors specific BSPs 

• Mature solutions, allows you to suits your exact needs
• -> But where to start from ??!
• -> To which price ??
• R&D efforts usually are spent on maintaining system  

instead of bringing values.

Dealing with Embedded Linux OS

Android (while being forked by  
various groups) is unique.  

 
Device manufacturers surely customize it, 

but there’s only one project  
you want to be compatible with,  

and it’s actively maintained for you 
the Google way.

Reasons For

 Android’s Attraction

Rich Application Framework

• GNU/Linux brings you choice to do 
things at your convenience.  

• Android comes with a single stable 
long-term API and excellent SDK.  

• Standardized Ecosystem for app-
developers and 3rd-party partners. 

• Build apps once for multiple targets  
to drastically save costs and efforts.

Aggressive Time-to-Market

• Stick to HW reference design, adapt the
platform and release your new device in a
few months ! 

• Though far from being easy  

• Requires Android-specific expertise and
knowledge of the OS internals !

Focus on “What Really Matters”

• You don’t have to care about the platform  
and framework anymore. 

• Board bring-up is time consuming and no
one wants to waste more time re-
inventing yet another embedded
distribution. 

• Developers actually only focus on areas  
that add commercial value (i.e. apps)

Open Source

• Android remains 100% tunable
• Though not developed  

in a community way.  

• Provides companies a feeling of safety  
regarding potential legal threats  
and licensing.

!
• Thanks to Apache/BSD/MIT licensing.

Under-The-Hood

Culprits

Standardization & Economy
• SoC development costs have grown in

complexity and difficulty of integration  

• HW manufacturers only invest in 
volume-driven apps and customers.  

• Vendors now feature Linux BSP 
only as an internal sandbox.

• Android drives market hence  
engineering resources allocation.

• HW vendors don’t invest in Linux 
as much as they once did.

Android HAL
• Hardware Abstraction Layer

• Allows device manufacturers to map
Android framework API.

• Specific to each Android release and
platform API. 

• Proprietary binary blobs prevents easy
upgrade and/or ROM customization.

• -> Customer often are forced to move to
next-generation devices instead of
upgrading SW :-(

Design Flaws
• Android uses many Open Source software  

but also reinvented the wheel !
• -> Mostly for licensing and convenience

purpose.
!

• NOT Real-Time Capable
• Best Effort approach is 1000Hz low-

latency.
• -> No PREEMPT_RT (proprietary user-

space drivers makes it impossible).
• -> Dalvik VM garbage collector pauses

execution context.

Design Flaws
• Terrible Audio and Multimedia Architecture

• Lots of Java and JNI indirection calls 
makes it sloooooow …
• -> Latency issues

• Ages away from FFmpeg or GStreamer in terms
of framework performances, hardware portability
and codecs support.

!
• Castrated Network and Connectivity Layers

• Can’t handle more than one input network
connection at a time (one driver, one type, one
interface).

• Adding things like Bluetooth, WiFi or basic
Ethernet support is a nightmare for device
manufacturers.

A Trade-off between Performance and Portability

• Appealing Java « write once, run
everywhere » framework’s philosophy. 

• Any serious performance-critical or
multimedia app relies on native C/C++ code
being done through NDK, cutting down
portability.

The limits of “embedded”

• Originally designed for low-power and low-
resource devices.

• Current smartphones feature 4-core
Cortex-A9/15, 32 GB eMMC, 2 GB RAM. 

• Starting with ICS, it becomes challenging
running Android with less than 512 MB RAM
and without OpenGLES-compatible GPU.

• Kit Kat highly improves this behaviour.
• But hasn’t Android raised the hardware

requirements just a bit too high ?

In a Few

Words …

Conclusion
• Android has brought the Linux kernel to 

an incredible number of devices.
• => More than a million devices being 

activated each day.
!

• Many manufacturers want Android on their device
• Sometimes just to follow the trend 

and be sure not to be left behind the market.
• Everybody surprisingly wants an app store 

(why ???)
!

• Paradoxically, Google has somehow  
slow down innovation:

• All devices look and do almost the same.
• To the extend of MMI and HW assembly quality.

• Embedded Linux remains the OS of choice for :
• Headless devices
• SOHO network equipments 

(routers, AP, servers …)
• Companies where engineers 

master Linux development for years.
• Devices where maximum performances are

expected.
!

• Android makes perfect sense on devices :
• Featuring an LCD screen with 

touch-capable display.
• Intended to be apps-driven.

Conclusion

Android has brought to the market  
what GNU/Linux misses the most :  

 
One single application framework  

that allows developers to deal with 
every single part of the system.

Conclusion

That’s All Folks …

Benjamin 
Zores

benjaminzores
@gxben
#Benjamin Zores

http://fr.linkedin.com/in/benjaminzores/
https://twitter.com/gxben
https://plus.google.com/u/0/+BenjaminZores

