
https://www.pengutronix.de

 Boot-Time Optimization for the
Real World

Embedded Linux Conference Europe 2020

Michael Olbrich – m.olbrich@pengutronix.de

 2/19

Motivations for this Talk

ELC-E 2019
 “We Need to Talk About Systemd: Boot Time Optimization

for the New init daemon”
 Basic introduction to boot time optimization

 “Timing Boot Time Reduction Techniques”
 Many good techniques, impressive results
 Unacceptable compromises for any of my projects

 That’s it?

 3/19

Motivations for Boot-Time Optimization

 Hard requirements
 Required interactions with the outside world within a certain

deadline after power-on.

 Soft requirements
 User experience

 4/19

Choose Your Optimization Targets

Examples:
 First CAN message on the bus
 First content on the display
 Limited user interaction possible
 Full user interaction possible

 5/19

Priorities of Conflicting Requirements

 Debugging devices in the field
 Robustness
 Security
 Development & testing
 Maintenance

systemd only

 6/19

Techniques

 Disable
 Handled in previous presentations

 Delay
 Do thing after the optimization target is reached

 Improve
 Optimize initialization code

 Cheat
 Find new ways to satisfy the requirements

 7/19

Serial Console

 Kernel output on a serial console is very slow
 Userspace is better but still unnecessary overhead

 loglevel=5
 Only show warnings or worse (should be none)

 systemd.log_level=warning
systemd.show_status=auto

 Only show output after an error occurs

 8/19

udev Coldplug

 Enumerate existing hardware while booting
 Ensures that devices are available before accessed
 Takes a long time

 Avoid dependencies in the hot path

 9/19

udev Coldplug - Data Partitions

Use automounts
 No direct dependency on the device of the partition
 udev coldplug happens while the application is starting
 The application waits for the filesystem on the first access

 10/19

udev Coldplug - Data Partitions

Trick systemd to skip device dependencies
 The device must exist when userspace starts
 Manual fsck handling required
 What=UUID=...

 Only works as explicit mount unit, not via fstab

 What=/symlink/outside/dev
 Works as explicit mount unit and via fstab

 11/19

udev Coldplug - Data Partitions - Example

Simple Qt QML Application

1. Create QGuiApplication & QQuickView

2. Read dummy file from the data partition

3. Load QML

4. Show Window

5. sd_notify()

 12/19

udev Coldplug - Data Partitions - Example

 Hardware: STM32MP1 (Dual Cortex-A7 800MHz), eMMC

 Start: ~8.0s
 Automount: ~7.4s
 Fake device: ~6.7s
 Automount + Fake device: ~6.7s

 13/19

udev Coldplug – Multiple Stages

 Avoiding coldplug dependencies is not always possible

 Two coldplug stages:
 udevadm trigger --type=devices \

 --subsystem-match=drm …

 udevadm trigger --type=devices \

 --subsystem-nomatch=drm …

 14/19

Early Splash Screen

 Run as pid 1
 Show splash screen
 Release DRM master (drmDropMaster())
 Fork

 Exec systemd in pid 1
 Just wait to be killed in the child

 15/19

Early Application

 fork() + exec() systemd
 Cannot take advantage of the systemd features

 Resource control, watchdog / monitoring, security

 Possible solutions:
 Import into service

 Write pid to /sys/fs/cgroup/system.slice/myapp.service/cgroup.procs
 Pass the sd_notify fd for watchdog handling
 Still no security features

 Restart application is a service
 State must be transferred

 16/19

Debug Features vs. Boot-Time

 Kernel tracing infrastructure
 Kernel startup until rootfs is mounted:

 Tracing enabled: ~1.4s
 Tracing disabled: ~0.5s

 Most of the time is spent in trace_eval_init()
 Maybe this could be done later / on demand?

Patch opportunity

 17/19

Security - Challenges and Opportunities

 Security enforces software architecture design
 multiple processes for privilege separation
 defined resource requirements for access permissions

 Reuse software architecture for boot-time optimization
 Not everything needs to start immediately
 Process ordering and startup priorities
 Avoid dependencies in the hot path
 ...

 18/19

Designing Hardware to Boot Fast

 Fast mass storage
 No USB in the hot path
 Avoid FPGA setup in the bootloader

https://www.pengutronix.de

Questions?

Michael Olbrich – m.olbrich@pengutronix.de

