Verified Boot: From ROM to Userspace

ELC Europe 2016, 12.10.2016

Marc Kleine-Budde <mkl@pengutronix.de>

Why Verified Boot?

Attractive hacking target:

- Linux systems control critical industrial processes
- Compared to servers, embedded systems receive poor maintenance

Complex Software:

- Every Linux system has undiscovered vulnerabilities
- Commercial control software (closed source)
- Defense in Depth is important!

We can do it ourselves:

- SoC with hardware support are available everywhere
- Software components are available as FOSS

What do we want to protect?

- Bootloader
- Kernel
- File system
 - Programs
 - Configuration files
 - Application data
- The attacker can manipulate all stored data
 - → we want to detect any tampering

Boot Stages

Boot Loader

- Usually on unprotected storage (NAND, eMMC, SD)
- Has full control over the system
- Must be verified by the ROM code
 - Hash of the certificate is burned to on-chip fuses
- Contains the public key to verify the Kernel image

Boot Loader

FIT-Image

- In separate partition or on root file system
- Consists of Kernel, Device-Tree and InitRAMFS
 - May contain several variants
 - Always signs a complete "configuration" of kernel, DT and InitRAMFS to prevent mix-and-match attacks
- Must be verified by the boot loader
 - Signature matches the public key in the boot loader
- Contains the public key to check the root file system

FIT-Image

Root File System (initial)

- ext4 oder UBIFS
 - File System needs Extended Attributes
- Every file has an IMA hash
 - SHA1 or SHA256 of the file content
 - Extended Attribute: security.ima
- Every file has an EVM signature
 - Secures Security Extended Attribues
 - Is signed on the development computer with a private key
 - RSA signature matches the public key in the kernel
 - Extended Attribute: security.evm

Root File System (initial)

Root File System (writable)

- No RSA-Signatures
 - There is no private key on the system
 - RSA is quite slow
- Instead SHA-HMAC
 - Requires a different shared Secret for each system
 - On first file access the signature is replaced by the HMAC
- Every file has an IMA hash and a EVM HMAC
 - Only a correctly booted system has access to the EVM Secret
 - Attackers cannot manipulate files and calculate a matching HMAC

Root File System (writable)

Encrypted File System - eCryptfs

- File system level encyption
 - Works both on NAND and block devices
 - Every file corresponds to an unencrypted file
 - File names and content encrypted
 - Directory layout and permissions are clear text
- Requires a different shared Secret for each system
- IMA/EVM not needed
 - Integrity is provided by AES in GCM mode

Encrypted File System - eCryptfs

Demo Time!

```
Starting systemd-media-automount-mo...r
  OK ] Started systemd-media-automount-mou...i
  OK ] Started systemd-media-automount-mou...i
  OK ] Started systemd-media-automount-mou...i
  OK ] Started systemd-media-automount-mou...i
  OSELAS(R)-demo-ELCE2016 / demo-ELCE2016
ptxdist-2016.01.0/2016-10-12T09:45:44+0200
demo login: root
root@demo:~ 11 /encrypted/
drwxr-xr-x
             2 root
                        root
                                     1024 Jan 1 00:01 .
                                     1024 Jan 1 00:00 ...
drwxr-xr-x 20 root
                        root
                                        4 Jan 1 00:01 bar
           1 root
                        root
root@demo:~ cat /encrypted/bar
root@demo:~ zip
   33.918143] audit_printk_skb: 78 callbacks suppressed
   33.923228] audit: type=1800 audit(1451606431.580:37): pid=319 uid=0 auid=4294
967295 ses=4294967295 op="appraise_data" cause="invalid-hash" comm="sh" name="/us
r/bin/zip" type=file dev="mmcblk0p1" ino=670 res=0
-sh: zip: Permission denied
                   [ 48.092033] random: nonblocking pool is initialized
root@demo:~
```


Do It Yourself!

- Freescale MX28
 - I2SE Duckbill (~100€)
 - MYIR Tech MYD-IMX28X (~100+40€)
- Freescale MX53
 - USB Armory (~130\$)
- Freescale MX6
 - Cubox-i (~110€)
 - RioT-Board (~85€)
- Without Hardware-Support: Read-Only SPI-NOR or eMMC + TPM

Used Components

- Supported SoCs:
 - MX25
 - MX6
- Bootloader: barebox-2016.09
- Kernel: linux-4.0.9 + patches
- offline image signing:
 - e2fsprogs (+patches)
 - ima-evm-utils (+patches)
- integrated everything with ptxdist

What's Missing?

- Protection of Directories
 - Prevents to move, delete and create files
 - There are already patches "directory integrity protection"
- Mainlining
 - Offline image creation via mkfs.ext4 and ima-evm-utils
 - blob drivers for imx6 crypto engine (CAAM)
 - blob drivers for mx25 crypto engine
- Support for other SoCs:
 - MX53
 - Other Vendors (Dokumentation?)

Best Practices / Lessons Learned

- Development Keys in BSP
- Access to Production Keys via pkcs#11
- Some packages in two configuration variants (Development/Production):
 - bootloader
 - Kernel/InitRAMFS
- Regularly turn on more security features during integration
- Once activated, debugging (field returns) becomes a pain
- UBIFS with IMA/EVM doesn't like sudden power cuts

Q&A

@marckleinebudde

