
SSG Core Software Division

Power Management
Quality of Service (PM_QOS)

Mark.gross@intel.com
mgross@linux.intel.com

Copyright © 2008, Intel Corporation. All rights
reserved.

mailto:Mark.gross@intel.com

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Introduction

• New HW provides more power/performance options than ever
before.

Device throttling over large dynamic ranges that can affect usability and
device stability.

• Hardware devices talk in terms of latencies, time outs, and
throughputs.

• Device drivers attempt to implement the power/performance
policy in an information vacuum using only local (to the driver)
knowledge.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Today's Situation

• Some PM architectures attempt to pull the policy implementation
up to a centralized policy manager away from the drivers that
know the hardware the best.

 These create dual point maintenance of device power / performance
knowledge -- a partial one in the driver and one in the policy
manager.

 Architecturally it removes all hope of good abstractions or stable and
useful PM API's.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Enter PM QoS

• PM QoS provides a coordination mechanism between the
hardware providing a power managed resource and users with
performance needs

• It is a new kernel infrastructure to facilitate the communication
of latency and throughput needs among devices, system, and
users.

• Automatic power management, at the driver level, is enabled
with coordinated device throttling given the QoS expectations on
that device.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Talk outline

• Existing examples of PM-QoS

• Implementation walk through

• How to use it from user space

• How to use it from kernel space

• iwl4965 example of how you could put PM-QoS into your
applications

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Examples of pm_qos in the 2.6.25 Kernel

• CPU-IDLE provides processor C-states when idle. That is, it
controls the idle processing and wakeup latency (dma-latency).

• ipw2100 malfunctions when C-state latencies are large

• pcm_native has sound artifacts when C-state latencies are large.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

pm_qos_params.c

• implements a set of PM_QOS parameters (currently just
cpu_dma_latency, network latency, network throughput),
exported to the kernel and to user mode.

• maintains a list of pm_qos requests for each parameter, along
with an aggregated performance requirement.

• maintains a kernel-only notification tree, for each parameter.

• provides the registration of performance requests and target
change notification KAPIs.

• provides a user mode interface for requesting QoS, through
simple character device file I/O.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Maintains lists of requested performance values for each QOS
parameter.

• when an element is added or changed, an aggregate target value
is recomputed.

• if this aggregate target value changes, it invokes the notification
tree for that QOS parameter.

• resources can also poll the aggregated value (see CPU_IDLE)

Implementation

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

PM_QOS implements:

• A simple API for modifying the lists can be found in:
pm_qos_params.h

• A user mode interface through simple character devices.

Interface

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

How to use PM_QOS from user mode:

•Register a default request value by opening one of the parameter
device nodes.

•Update the request by writing a signed 32-bit integer to the open
device node.

•Remove the request by closing the handle to the device node.

•Currently the device nodes are based on misc devices.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Python Example setting network_latency to
at most 2000us

#!/usr/bin/python

import struct, time

DEV_NODE = “/dev/network_latency”

pmqos_dev = open(DEV_NODE,'w')

latency = 2000

data = struct.pack('=i', latency)

pmqos_dev.write(data)

pmqos_dev.flush()

while(1):
time.sleep(1.0)

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

poll the aggregated target value.

KAPI:
 int pm_qos_requirement(int qos)

register a notifier into the parameter notification chain.

KAPIs:
 int pm_qos_add_notifier(int qos, struct notifier_block *notifier)

�

 int pm_qos_remove_notifier(...)

�

To create a new PMQOS parameter, you need to modify the pm_qos_init code.

How a resource uses PM_QOS in the kernel

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

How a dependent uses PM_QOS from kernel
mode
• register a named list element in the parameter list, along with an initial

element target value.
 int pm_qos_add_requirement(int qos, char *name, s32 value)

• update the value of the named element
 int pm_qos_update_requirement(int qos, char *name, s32 value)

• clean up / remove named element
 void pm_qos_remove_requirement(int qos, char *name)

�

Aggregated target is recomputed after any change to a parameter list.

Notification trees are called if the aggregate value has changed.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Example application of PM_QOS in IWL4965
driver

• This is a work in progress.

• I'm currently working with one of the IWL 4965 developers to
make this work.

• The 4965 has 6 high level power configurations effecting the
powering of the antenna, how quickly it sleeps the radio and for
how long between AP-beacons.

• Looks like a good application of PM_QOS network latency.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

IWL4965 Main Power Configurations

• Power level zero radio is always on and powered.

• Power level five sleeps the radio as much as it can given the
current access point beacon configuration.

• Power levels effect latency of incoming and outgoing packets
and how quickly the device turns the radio back off when idle.

• There are a host of other unused power parameters in the driver
that could be played with.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Network latency could be used to affect
iwl4965 power policy

• today policy is set via sysfs and is specific to the 4965.
 see store_power_level in iwl4965-base.c

• the iwl4965_init code could register for pm_qos notifications of
updated network latency and execute a switch on the updated
latencies to set new power levels upon pm_qos notification.

• with pm_qos use of network_latency other network devices could
implement similar power / performance trade offs and enable
sane user mode policy managers

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

use container_of to get a pdev from the
notifier block call back

struct iwl4965_pm_qos_nb {

struct notifier_block my_nb;

struct pci_dev *pdev;

};

static int iwl4965_pm_qos_notify_call(struct notifier_block *nb,
unsigned long val, void *v)

{

struct iwl4965_pm_qos_nb *ipqn =container_of(nb,
struct iwl4965_pm_qos_nb, my_nb);

iwl4965_pm_qos_nb, my_nb);
.....

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

User space can now set performance
expectations on network latency

• network shooter games could set network latency to zero to
disable all power management

• Web browser could set it for 2,000,000us

• IM application could set it for 500,000us

• User mode policy manager (OHM?) could set it to zero when on
wall power and 10,000,000us when on battery.

• The above can happen at the same time, in any combination.

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Do you have an application that could use
PM-QoS?

HTTP://OPENSOURCE.INTEL.COM

 SSG Core Software Division

Comments and Questions

