
Presented by

Date

Android Multilib
Build Cheat Sheet

Amit Pundir
twitter: pundiramit

irc: pundir at #linaro-android (freenode)

Monday, 23rd March 2015
Android Builders Summit

Android Multilib Build Cheat Sheet

● AOSP build configurations
○ 32-bit and 64-bit only builds
○ Multilib builds

● How to do a Multilib build?
○ Multilib platform configuration
○ Building Multilib modules

● Multilib examples from android-5.1.0_r1
○ Platform configuration example
○ Multilib module build example

AOSP Build Configurations

● 32-bit and 64-bit only builds
○ Android build for a single target cpu arch

i.e. either 32-bit or 64-bit.

● Multilib builds
○ Android build for two target cpu archs

e.g. 64-bit primary and 32-bit secondary,
or 32-bit primary and 64-bit secondary.

32-bit and 64-bit only builds

● 32-bit only build
○ Target support 32-bit applications only
○ Build 32-bit Android binaries to run on 32-bit targets
○ Generate huge interest even on 64-bit targets

● 64-bit only build
○ Target support 64-bit applications only
○ Build 64-bit Android binaries to run on 64-bit targets
○ Build not yet ready for a day to day use. Builds successfully but doesn’t

boot up. Last tried booting on stock android-5.1.0_r1.

Multilib builds

● Multi-target build configuration for 64-bit targets
● Support building binaries for two target cpu archs in the

same build, with a primary and a secondary arch
configuration.

● Target can support both 32-bit and 64-bit applications

Multilib builds

● 64-bit Primary and 32-bit Secondary (aka 64_32)
○ 64-bit arch is configured as the Primary arch and 32-bit as Secondary
○ 64-bit is the default target for modules if not configured otherwise locally
○ system_server will run as a 64-bit process

● 32-bit Primary and 64-bit Secondary (aka 32_64)
○ Build configuration contrary to 64bit Primary and 32bit Secondary
○ Theoretically possible, traces still available in AOSP

(system/core/rootdir/init.zygote32_64.rc)
○ Configuration might have been dropped somewhere in the development

cycle. Build is broken for stock android-5.1.0_r1
art/build/Android.common.mk:42: *** Do not know what to do with
this multi-target configuration!. Stop.

Multilib builds

● Zygote configuration
○ Primary and Secondary zygotes

■ Multilib builds run two zygote processes
■ Primary zygote and Secondary zygote
■ To support both 64bit and 32bit applications

○ Starting Lollipop, zygote init config is not part of init.rc anymore.
■ init.rc include init.${ro.zygote}.rc at runtime which initialize zygotes
■ Enable/Select Multilib zygote in product config:

PRODUCT_DEFAULT_PROPERTY_OVERRIDES += ro.zygote=zygote64_32
PRODUCT_COPY_FILES += system/core/rootdir/init.zygote64_32.rc:root/init.zygote64_32.rc

Multilib builds
○ Dissecting /init.zygote64_32.rc:

service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd

“service zygote” → /system/bin/app_process64 → Primary Zygote
“--start-system-server” → system_server → 64-bit process

service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary
class main
socket zygote_secondary stream 660 root system
onrestart restart zygote

“service zygote_secondary” → /system/bin/app_process32 → Secondary Zygote

How to do a Multilib build?

● Multilib platform configuration
○ Configure target archs and abis
○ Application/Executables support
○ Custom toolchains

● Building Multilib modules
○ Local build flags
○ Building arch specific modules
○ Binary installation path
○ Handling pre-built modules
○ Dex-preopt and generated sources

Multilib Platform Configuration

● Configure target CPU archs and ABIs in BoardConfig.mk
○ Primary arch:

■ TARGET_ARCH and TARGET_CPU_* variables defined as usual
TARGET_ARCH := arm64
TARGET_ARCH_VARIANT := armv8-a
TARGET_CPU_VARIANT := generic
TARGET_CPU_ABI := arm64-v8a

○ Secondary arch:
■ Android build system uses TARGET_2ND_* variables to set up an additional

compilation environment for the secondary arch
TARGET_2ND_ARCH := arm
TARGET_2ND_ARCH_VARIANT := armv7-a-neon
TARGET_2ND_CPU_VARIANT := cortex-a15
TARGET_2ND_CPU_ABI := armeabi-v7a
TARGET_2ND_CPU_ABI2 := armeabi

Multilib Platform Configuration

● Application/Executables Support
○ To build 32-bit executables and apps by default, set

TARGET_PREFER_32_BIT := true

○ Set TARGET_SUPPORTS_32_BIT_APPS and TARGET_SUPPORTS_64_BIT_APPS to choose
which native libraries to build for an app.
■ If both are set, it will build 64-bit apps unless TARGET_PREFER_32_BIT is set or it

is overriden by module-specific local variables in Android.mk
■ If only one is set, it will only build apps that work on that particular arch.
■ If neither is set it will fall back to only building 32bit apps unless overridden by

Android.mk config.

Multilib Platform Configuration

● Set Custom Toolchains
○ Set TARGET_GCC_VERSION_EXP, if you are using a common GCC toolchain

version for both the archs.
■ For example, to use custom 4.9-linaro toolchains to build both 32-bit and 64-

bit binaries, set:
TARGET_GCC_VERSION_EXP := 4.9-linaro

The build system in this case will pick both 32-bit and 64-bit custom 4.9-linaro
toolchains from default prebuilts toolchain path
i.e. prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.9-linaro and
prebuilts/gcc/linux-x86/aarch64/aarch64-linux-android-4.9-linaro.

Multilib Platform Configuration

○ Set TARGET_TOOLCHAIN_ROOT and 2ND_TARGET_TOOLCHAIN_ROOT to use different
toolchain versions for 64-bit and 32-bit binaries.
■ For example, set custom 4.9-linaro toolchain for primary arch and stock 4.9

toolchain for secondary arch:
TARGET_TOOLCHAIN_ROOT := prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.9-linaro
2ND_TARGET_TOOLCHAIN_ROOT := prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.9

Building Multilib Modules

● Building an Android module with Multilib support
○ Module names in product configuration, PRODUCT_PACKAGES, together with

the dependency graph decides what binaries will be built and installed to
the system image.
■ For libraries pulled in by dependency, a 32-bit library is only installed if it’s

required by a 32-bit library or executable. The same is true for 64-bit libraries.
■ For executables, by default the build system builds only the 64-bit version, but

this build rule can be overridden by TARGET_PREFER_32_BIT or LOCAL_32_BIT_ONLY
module-scoped local variable.

Note: Module names on the make command line cover only the 64-bit version build.
For example, after running “lunch aosp_arm64-eng”, “make libc” builds only the
64-bit libc. To build the 32-bit libc, you need to run “make libc_32”.

Building Multilib Modules

● Module definition in Android.mk
Set LOCAL_MULTILIB to build for 64-bit and/or 32-bit archs. It overrides the
global TARGET_PREFER_32_BIT.

■ LOCAL_MULTILIB := first, build module for the first arch (64-bit on a 64-bit target,
32-bit on a 32-bit target). Same as LOCAL_NO_2ND_ARCH := true

■ LOCAL_MULTILIB := 32, build only 32-bit, same as LOCAL_32_BIT_ONLY := true

■ LOCAL_MULTILIB := 64, build only 64-bit.
■ LOCAL_MULTILIB := both, build for both architectures on a Multilib target.
■ LOCAL_MULTILIB := “”, build depends on other global or LOCAL_* module-scoped

variables.

Building Multilib Modules

○ Local build variables:
To set up a custom local build env, use the LOCAL_* variables.
■ Set an arch-specific variable, LOCAL_ variable with a target arch suffix

i.e. LOCAL_*_$(TARGET_ARCH) and LOCAL_*_$(TARGET_2ND_ARCH).
● For example:

LOCAL_CFLAGS_arm64 += -DARCH_ARM64_HAVE_NEON
LOCAL_SRC_FILES_arm := xyz_arm.c

■ Or set LOCAL_ variable with a _32 or _64 suffix based on whether to build for 32-
bit or 64-bit, independent of target arch.

● For example:
LOCAL_CFLAGS_64 += -DARCH_GENERIC_HAVE_ABC
LOCAL_SRC_FILES_32 += xyz_generic.c

Note: Not all LOCAL_ variables support arch/target specific variants.
Refer to build/core/clear_vars.mk for an up-to-date list.

Building Multilib Modules

○ Building for specific arch(s):
To drive an arch-specific build, use the following variables.
■ LOCAL_MODULE_TARGET_ARCH and LOCAL_MODULE_UNSUPPORTED_TARGET_ARCH

specifies that a module can or cannot be built for one or more architectures.
LOCAL_MODULE_TARGET_ARCH := “arm arm64 x86_64”
LOCAL_MODULE_UNSUPPORTED_TARGET_ARCH := “arm arm64 ..”

■ LOCAL_MODULE_TARGET_ARCH_WARN and
LOCAL_MODULE_UNSUPPORTED_TARGET_ARCH_WARN are same, but warn that the
arch is not supported, which is useful for modules that are critical but not yet
working.

Building Multilib Modules

○ Installation Path:
■ Libraries: /system/lib always host 32-bit libraries, and /system/lib64 64-

bit libraries.
■ Executables: If you build an executable as both 32-bit and 64-bit,

then either set LOCAL_MODULE_STEM_{32,64} to distinguish the installed file
name, or set LOCAL_MODULE_PATH_{32,64} to distinguish the install path.

■ In multilib builds the install location depends on the CPU target. Set
LOCAL_MODULE_RELATIVE_PATH to set the install location instead of
LOCAL_MODULE_PATH.
● For example, HALs will generally use: LOCAL_MODULE_RELATIVE_PATH := hw

Building Multilib Modules

○ Handling pre-built Multilib modules:
■ Set LOCAL_SRC_FILES_$(ARCH_SUFFIX) to point to arch specific prebuilt

binaries, similarly LOCAL_SRC_FILES_{32,64} can be used for arch
independent target binaries.

■ $(TARGET_ARCH) and $(TARGET_2ND_ARCH) can’t be used reliably to tell the
build system what arch the prebuilt binary is targeted for. Use
LOCAL_MODULE{,_UNSUPPORTED}_TARGET_ARCH local variables instead.

■ All the build rules for Multilib executables hold true for pre-built
executables as well. For example: if you don’t provide
LOCAL_MODULE_STEM_{32,64} or LOCAL_MODULE_PATH_{32,64}, then _32
executable will override the _64 executable in /system/bin.

Building Multilib Modules

○ Dex-preopt:
■ By default Multilib build generate both 32-bit and 64-bit odex files for

the boot image and any Java libraries.
■ For APKs, by default odex files are generated only for the primary

64-bit arch.
● If the app can be launched in both 32-bit and 64-bit processes, then set

LOCAL_MULTILIB := both to make sure both 32-bit and 64-bit odex files are
generated.

● LOCAL_MULTILIB := both also include both 32-bit and 64-bit JNI libraries in
the build, if the app has any.

Building Multilib Modules

○ Generated sources:
■ In Multilib, intermediate generated source files will be required by

both 32-bit and 64-bit builds.
■ Legacy $(local-intermediates-dir) and $(intermediates-dir-for) variables do not work

reliably. Use $(local-generated-sources-dir) and $(generated-sources-dir-for) instead.
■ If a source file is generated to the new dedicated directory and

picked up by LOCAL_GENERATED_SOURCES, it is built for both 32-bit and 64-
bit build.

Multilib Examples From AOSP

● device/htc/flounder/Boardconfig.mk
○ Device config example

● system/core/debuggerd/Android.mk
○ Local or Module scoped build variables example

● 64_32 device config: Flounder
device/htc/flounder/BoardConfig.mk
○ Set Primary, Secondary CPUs and

supported ABIs
○ TARGET_USES_64_BIT_BINDER should be

set even while doing a 32-bit only
build for a 64-bit arch.

○ TARGET_SUPPORTS_{64,32}_BIT_APPS,
target support 64-bit applications only.

● Multilib Android Module: debuggerd
system/core/debuggerd/Android.mk
○ LOCAL_SRC_FILES, common src
○ LOCAL_SRC_FILES_*, arch specific src
○ TARGET_IS_64_BIT, true if TARGET_ARCH is

64-bit i.e. {arm64, x86_64 or mips64}.
○ LOCAL_MODULE_STEM_*, install

executables at same location i.e.
/system/bin with different names.

○ LOCAL_MULTILIB, build module for both
the archs.

References

● AOSP changelog
● [android-64] New variables and macros of make system in

android 64/32-bit build
● Android Platform 64-bit Build Instructions

https://groups.google.com/forum/#!topic/android-64/HVOxoDvIsYg
https://groups.google.com/forum/#!topic/android-64/HVOxoDvIsYg
https://groups.google.com/forum/#!topic/android-64/HVOxoDvIsYg
https://groups.google.com/forum/#!topic/android-64/HVOxoDvIsYg
http://source.android.com/source/64-bit-builds.html
http://source.android.com/source/64-bit-builds.html

