
1

Software implications of high-
performance memory systems

Leif Lindholm
ARM Ltd.

Embedded Linux Conference Europe 2010
Copyright 2010, ARM Ltd.

2

Alternative titles

Barriers – the what, the how, and the by all that is holy why?

What you’re going to wish you didn’t know about modern
computer systems if you don’t already

Of course it couldn’t do that! …could it?

3

Overview
This presentation aims to explain some of what goes on underneath your
feet when developing software for modern computer systems.

The good news is that if you are an application developer, you normally
don’t need to be aware of this. Congratulations!

The bad news is that if you are developing or debugging kernel code,
drivers, system libraries, execution environments, JIT compilers, …, you
do. Sorry.

4

It all used to be so simple
Single core

In-order
Single-issue
No speculation
No caches?

Only slave peripherals
No DMA

Simple operating systems
Bare metal?

Few, if any, user-accessible
expansion ports

Processor

DRAM

Flash

Modem

LCD

Audio

GPIO

5

The world today

core

core core

core

L2 cache

PCIe

USB

SATA

DMC

Multi-layer
reordering
bus matrix

DDR3 DDR3

Southbridge

graphics
accelerator

DSP

Ethernet

graphics
controller

6

The world today
Multi-core processors
Speculative multi-issue out-of-order cores
Multiple levels of caches

Some with hardware coherency management

Multi-layered bus interconnects
Memory access merging (reads and writes)
Many agents/bus-masters in system
End-user accessible expansion busses
Highly optimizing compilers

Most of this available today in devices amusingly still referred
to as phones, as well as set-top-boxes, TVs, …

7

So what does all that stuff mean
in practise?

8

In the good old days…
Things happened in the way specified by the program
Things happened the number of times specified in the
program (no more, no less)
Only one thing happened at once

This is now referred to as “the sequential execution model”
For software to work at all, this model must still appear to be in place
within the scope of a single process executing on a single core

But throw in some SMP and the world changes…
And this will not necessarily be true for an external observer
comparing the bus traffic to the program code

9

Multi-issue (superscalar)
More than one instruction
can be issued per clock
cycle, where not prevented
by data-dependencies

Offers new and exciting
ways for compilers to
improve code performance
by shuffling instructions
around

1 add r0, r0, #1
2 mul r2, r2, r3
3 load r1, [r0]
4 mov r4, r2
5 sub r1, r2, r5
6 store r1, [r0]
7 return

1 add mul
2 load mov
3 sub *stall*
4 store return

Executing on a dual-issue core

10

Speculation
The core executes things before it is determined if they are
actually meant to execute

Pretending that nothing happened if it turns out the speculation was
not the actual case

The core fetches code or data it determines might be used
soon into cache ahead of time (prefetching)

add r0, r0, #1
cmp r0, #42
bne skip
load r1, [r2]
b proceed

skip: load r1, [r3]
proceed: store r1, [r4]

11

Out-of-order execution
When core detects an unresolved data-dependency
preventing it from issuing an instruction, it just issues the
next instruction instead of stalling waiting for the result to
come back

Continues executing until there are no
non-dependent operations available

1 add r0, r0, #1
2 mul r2, r2, r3
3 store r2, [r0]
4 load r4, [r1]
5 sub r1, r4, r2
6 return 1 add r0, r0, #1

2 mul r2, r2, r3
4 load r4, [r1]
3 store r2, [r0]
5 sub r1, r4, r2
6 return

1 add r0, r0, #1
2 mul r2, r2, r3

stall
3 store r2, [r0]
4 load r4, [r1]

stall
5 sub r1, r4, r2
6 return

In-order

Out-of-order

12

Coherency-managed SMP
Lines can migrate between (data) caches at any time
Write buffers can affect externally visible ordering of memory
accesses (between cores as well as in the outside system).

send_ipi: (core0)
load r3, #IPI_ID
store r2, [r1] @ set payload
store r3, [r0] @ send IPI

recv_ipi: (core1)
load r1, [r0]
cmp r1, #VALUE @ should contain what

@ was in r2 on core0

13

External masters
Typical use of a DMA controller:

You write a bunch of data into a shared buffer, and clean your caches
after completion if using cached memory
Then you signal the DMA controller to start transferring
Things will work a whole lot better if the DMA controller sees these
operations in this order

Using a DSP to do video decode into a shared buffer?

14

And let’s not forget the compilers

Ignoring all of the magic I’ve mentioned underneath the hood,
what would you expect somefunc() to return?

42, yes, that’s possible.
So is 0.

int flag = BUSY;
int data = 0;

int somefunc(void)
{

while (flag != DONE)
continue;

return data;
}

void otherfunc(void)
{

data = 42;
flag = DONE;

}

15

All in all
Reading architecture specifications these days, you
frequently come across interesting terms and phrases like:

…is observed to…
…must appear to…

The comfy world of sequential execution is no more. One
must now think of whether the effect of an instruction can be
detected rather than if it has “executed”

If you dual-issue a NOP with an ADD … does it take any time to
execute?

Where correct operation requires something to appear in the
same order to multiple agents, this must be explicitly ordered

16

So how come anything actually
works?

17

How come anything works?
Because within each core, the sequential execution model
must still (appear to) hold true

Dependent/overlapping accesses cannot be reordered*

Because of barriers

And because library functions that require barriers for correct
operation already use them where necessary

void somefunc(void)
{

unsigned char *cptr = iptr;
*iptr = 0x12345678;
cptr[1] = 0xff;

}

18

Barrier and Fence instructions
Barriers make it possible to write software that actually works
Instructions that explicitly order memory accesses

Prevent reordering of any memory accesses past the barrier
Prevent reordering of specific memory accesses past the barrier
Ensure synchronization between data and instruction side
Ensure synchronization between instruction stream and memory
accesses

Architecture Barriers
Alpha IMB, MB, WMB
ARMv7 DMB, DSB, ISB
IA64 MF
PPC SYNC, LWSYNC, EIEIO
x86/AMD64 LFENCE, MFENCE, SFENCE

19

Compiler barriers
An optimizing compiler is free to reorder non-volatile memory
accesses in any way it sees fit in order to improve
performance.

And remember
Documentation/volatile-considered-harmful.txt

while (*hold == 1);
return *ret;

load r0, [ret]
1: load r1, [hold]

cmp r1, #1
beq 1b
b LR

This can be prevented by introducing a compiler scheduling barrier:
barrier() defined in include/linux/compiler-gcc.h

#define barrier() __asm__ __volatile__("": : :"memory")

20

Linux generic memory barriers
Linux defines a set of generic memory barrier macros, common both to
SMP and uniprocessor systems

Since the DEC Alpha had the weakest memory model of all platforms in
the kernel, this became the template for the architecture-independent
model within Linux

“If it works on the Alpha, it’ll work anywhere”

Guaranteed to be at minimum a compiler barrier
But where architecturally required, it will output the necessary barrier instruction

Macro Functionality
mb() No memory accesses can overtake.
rmb() No reads can overtake.
wmb() No writes can overtake.

21

Linux SMP memory barriers
Linux also defines a set of barriers that ensure correct operation in SMP
systems – in practise where hardware coherency management is in place

Only guaranteed for cached memory, system bus effects ignored

NOT a superset of generic barriers – usually weaker

Turned into compiler barriers when CONFIG_SMP is not enabled

Macro Functionality
smp_mb() No memory accesses can overtake.
smp_rmb() No reads can overtake.
smp_wmb() No writes can overtake.

22

Read dependency barriers

Macro Functionality
read_barrier_depends() Ensures values from previous reads are usable.
smp_read_barrier_depends() Ensures values from previous reads are usable.

*The DEC Alpha processor amazingly permitted reordering dependent
loads

The read_barrier_depends() macros were introduced to deal with this
– these turn into NULL statements on all other architectures (not even
compiler barriers)

23

mmiowb()
mmiowb() forces global ordering of memory mapped I/O
accesses

Macro Functionality
mmiowb() Synchronize I/O globally.

24

outer_sync()
When barriers only reach the external bus interface of the processor, the
interconnect can still reorder bufferable memory accesses

Cortex-A9 does not have an integrated Level 2 cache – most implementations
supplemented with external PL310 controller.
ARM-specific outer_sync() macro included in mb() when DMA memory treated as
bufferable

arch/arm/include/asm/outercache.h

CPU

store (DMA region)
mb()
store (initiate transfer)

store (initiate transfer)
store (DMA region)

L2 cache

CPU

store (DMA region)
mb() – with outer_sync()
store (initiate transfer)

store (DMA region)
store (initiate transfer)

L2 cache

mb() without outer_sync() mb() with outer_sync()

25

Shameless marketing
Cortex-A15 has an integrated L2 cache, but also implements external bus
interfaces following the new AMBA4 AXI specification

These AMBA4 AXI interfaces also support ACE (AMBA Coherency
Extensions)

ACE includes support for having the interconnect propagating barriers
Barriers can be specified with a limit. Backwards-compatible in that unimplemented
barrier variants will execute as System-wide barriers.

Non-shareable (NSH)
Inner-shareable (ISH)
Outer-shareable (OSH)
System-wide (SY)

26

I/O accessors
A long thread (“USB mass storage and ARM cache
coherency”) spanned several kernel lists earlier this year

Uncovered that actually quite a few drivers do not really use barriers
everywhere they should be
The pragmatic solution was to add barriers to ARM I/O accessors

read{b,w,l}()

write{b,w,l}()

ioread{8,16,32}()

iowrite{8,16,32}()

27

Synchronization primitives
spin_{lock,unlock}() contain smp_mb()

This ensures ordering between acquiring the lock and accessing the
protected resource, and between modifying the resource and
releasing the lock

atomic_{inc,dec,add,sub}() make no such promises

28

In summary
So, barriers are great – I should put mb() everywhere just to
make sure?

Well, no … barriers are sometimes required to make software work as
expected, but they do come at a cost

An smp_rb() might have no visible impact even on an SMP
system, whereas an mb() can force an outer_sync() as well
as forcing a drain of the write buffer.
Always use the weakest barrier possible – even if there is no
noticeabe difference on your current platform between using
smp_rmb() or mb(), that is not necessarily the case for other
platforms. Some of which you might be using in your next project.

29

References
Documentation/memory-barriers.txt

Paul E. McKenney - Memory Barriers: a Hardware View for Software Hackers
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.07c.pdf

Evolution of “Memory Ordering in Modern Microprocessors” LJ articles

Kourosh Gharachorloo - Memory consistency models for shared-memory
multiprocessors

Barrier Litmus Test and Cookbok - infocenter.arm.com

	Software implications of high-performance memory systems
	Alternative titles
	Overview
	It all used to be so simple
	The world today
	The world today
	Slide Number 7
	In the good old days…
	Multi-issue (superscalar)
	Speculation
	Out-of-order execution
	Coherency-managed SMP
	External masters
	And let’s not forget the compilers
	All in all
	Slide Number 16
	How come anything works?
	Barrier and Fence instructions
	Compiler barriers
	Linux generic memory barriers
	Linux SMP memory barriers
	Read dependency barriers
	mmiowb()
	outer_sync()
	Shameless marketing
	I/O accessors
	Synchronization primitives
	In summary
	References

