
© Mitsubishi Electric Corporation© Mitsubishi Electric Corporation

Continuous Integration and Autotest
Environment using Fuego

Kengo IBE and Kenji TADANO

Mitsubishi Electric

13th, October 2016

Embedded Linux Conference Europe

1

© Mitsubishi Electric Corporation

Who am I

• Kengo IBE
– Embedded Linux Developer at the Mitsubishi Electric

Information Technology R&D Center
– Also I’ve been on loan to Linux Foundation

• Kenji TADANO
– Embedded Linux Developer at the Mitsubishi Electric

Information Technology R&D Center

• We have been collaborating with OSS community!!
– LTSI : Long Term Support Initiative
– AGL : Automotive Grade Linux

2

© Mitsubishi Electric Corporation

Outline

• Overview

• Back Ground

• Test Framework / Fuego

• Further Improvement

– Running a test automatically

– Utilizing OSS test suite

• Conclusion

3

© Mitsubishi Electric Corporation

Overview

• At ELCE 2015, we showed how to customize and
run Fuego (LTSI Test Framework) with your test
target

• On this session, we share how to utilize Fuego as
test framework for embedded systems, based on
our experience

4

© Mitsubishi Electric Corporation

Back Ground

• For embedded systems, Linux kernel is used widely

• Because Linux Kernel is very huge, the discussion
on how to ensure the quality is often occurred

• Introducing test framework such as Fuego into
development, should ensure the quality effectively

5

© Mitsubishi Electric Corporation

Introduction of Test Framework

6

Test target

Test
result

Test target

Test case Test case

Test case

Old way

テスト
結果

Test
result

You need to run test
case manually

You need to check test
result one by one

You need to create and manage
test case for each target

• When running test on target, there are some issues

© Mitsubishi Electric Corporation

Introduction of Test Framework

7

Test target

Test target

・・・

You can summarize and
manage test result, collectively

Te
st

 c
as

e

Te
st

 c
as

e

Te
st

 c
as

e
Test framework

Test
result

You can run test
case automatically

You can manage test
case, collectively

Common test environment

Test target

Test
result

Test target

Test case Test case

Test case

Old way

テスト
結果

Test
result

© Mitsubishi Electric Corporation

Why Fuego

• Fuego is one of the test framework that is created by
LTSI project, based on Jenkins

• Fuego is OSS that anyone can use and contribute

• Some manufacturers are using Fuego as test
framework

• Recently, AGL chose Fuego as standard test
environment(AGL-JTA)

8

You can choose Fuego and introduce it into your
development. Fuego includes many useful functions but…

© Mitsubishi Electric Corporation

• To become more convenient, share some ideas
using our experience

Further Improvement

9

Waste much time for executing
test, repeatedly
→ Introduce the automated test
that is triggered by software
update

Test target

Test target

・・・

Te
st

 c
as

e

Te
st

 c
as

e

Te
st

 c
as

e
Test framework

Test
result

Common test environment

Creating all test cases is tough work
→ Utilize OSS test suite as much as
possible

© Mitsubishi Electric Corporation

• How to introduce the automated test that is triggered
by software update?

Running a test automatically

10

Test target

Test target

・・・

Te
st

 c
as

e

Te
st

 c
as

e

Te
st

 c
as

e
Test framework

Test
result

Common test environment

Waste much time for executing
test, repeatedly
→ Introduce the automated test
that is triggered by software
update

© Mitsubishi Electric Corporation

Current Situation

• Release new version kernel cyclically

– For maintenance, run test for new kernel version each
time

– When detecting bug, it needs to be fixed manually

11

4.1.17
Jan 31th

4.1.18
Feb 15th

4.1.19
Mar 4th

4.1.20
Mar 17th

OSS
Kernel

4.1.21
Apr 3th

4.1.17-
custom

4.1.18-
custom

4.1.19-
custom

4.1.20-
custom

In-
house
Kernel

In-
House
Patch

Maintenance

4.1.21-
custom

Share how to run test automatically when OSS updates

Update
and
Test

© Mitsubishi Electric Corporation

• Overview of Automated test environment

Automated test environment using Fuego

12

Fuego/AGL-JTA

LTS
Tree

LTSI
Tree

Target Board
Or Qemu

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

SSH
Client

Test
Binary

④Build Test Case
for Target Board

Test
Results

log⑥Show Test Results

⑤Verify Test Result logs

Test
Cases

③Deploy & Boot
the Kernel image

New Jenkins jobs need to be
created

Root
FS

U-boot

In-house
Tree

© Mitsubishi Electric Corporation

Case study : Raspberry Pi kernel Tree + LTSI patch

• When Raspberry Pi kernel is updated, Fuego starts to test

13

Fuego/AGL-JTA

Raspi
Kernel

LTSI
Patch

Raspberry Pi2

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

SSH
Client

Test
Binary

④Build Test Case
for Target Board

Test
Results

log⑥Show Test Results

⑤Verify Test Result logs

Test
Cases

③Deploy & Boot
the Kernel image

Today Target, how to set up.

Root
FS

U-boot

© Mitsubishi Electric Corporation

①Fetching source from repositories

• 2 jobs to fetch sources

– Job1: Fetch Raspberry Pi kernel Tree

– Job2: Fetch LTSI patch Tree

14

Raspi
Tree

LTSI
Tree

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

③Deploy & Boot
the Kernel image

Raspberry Pi2

Root
FS

U-boot

© Mitsubishi Electric Corporation

① cont. (Create Job1 & Job2)

•Job1: Fetch Raspberry Pi kernel Tree

•Job2: Fetch LTSI patch Tree

Check_repo _raspi _linux

Check_repo _ltsi

Enter new Job name

For Raspi(Job1)

For LTSI(Job2)

Enter new Job name

© Mitsubishi Electric Corporation

① cont. (Set Repo URL)

16

https://github.com/raspberrypi/linux.git

*/rpi-4.1.y

raspi-linux

http://git.linuxfoundation.org/ltsi-kernel.git

*/master

ltsi-kernel

For Raspi(Job1)

For LTSI(Job2)

Set Repo URL

Sub-directory name to check out

Set the Branch: (In this case,
LTSI kernel version is 4.1 as same version.）

Set Repo URL

Sub-directory name to check out

Set the Branch:(In this case,
Master branch means 4.1 in Oct. 2016.）

© Mitsubishi Electric Corporation

① cont. (set schedule to poll repo)

• Set Build Triggers

• Choose either/both job to kick the kernel build job
you like

– In this situation, Trigger is LTSI update (Job2)

17

For Raspi(Job1) For LTSI(Job2)

H 23 * * *
This field follows the syntax of CRON.

It means to check Repo update everyday at 11 p.m.

Set the next job name to build LTSI kernel for raspi2

For LTSI(Job2)

Build_kernel_raspi

© Mitsubishi Electric Corporation

② Build the Kernel

• Create a new job to build Kernel

1) Get the sources from previous jobs

2) Apply the LTSI patches to Raspi kernel

3) Build the LTSI kernel

4) Archive the LTSI kernel image and source code

18

Raspi
Tree

LTSI
Tree

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

③Deploy & Boot
the Kernel image

Raspberry Pi2

Root
FS

U-boot

© Mitsubishi Electric Corporation

②-1 Get the sources

19

•Create the new Job

•Set the repository

– Install Multiple SCMs plugin

• This plugin enables the selection of multiple
source code management systems

– Choose Multiple SCMs

“Select Multiple SCMs” in Source Code Management.
Select Git in “Add SCM” list.

Enter new Job name

Build_kernel_raspi

© Mitsubishi Electric Corporation

②-1 Get the sources(cont.)

20

/tmp/dev-slave1/workspace/check_repo_raspi_linux/raspi-linux/

*/rpi-4.1.y

raspi-linux

+refs/remotes/origin/*:refs/remotes/origin/*

•Set Raspi Git repo of Fetch Source Job

Set the Git repo directory in Fetch Source Job Workspace

Set the Refspec

Set the Branch (LTSI kernel version is 4.1 as same version.）

Set Sub-directory name to check out

© Mitsubishi Electric Corporation

②-1 Get the sources(cont.)

21

/tmp/dev-slave1/workspace/check_repo_LTSI/ltsi-kernel

*/master

+refs/remotes/origin/*:refs/remotes/origin/*

ltsi-kernel

Set the Git repo directory in Fetch Source Job Workspace

Set the Refspec

Set the Branch:(Master branch means 4.1 in Oct. 2016.）

Set Sub-directory name to check out

•Set LTSI Git repo of Fetch Source Job

© Mitsubishi Electric Corporation

②-2,3 Applying patches & Build the kernel

22

•Describe a shell script for building

– Selecting “Execute shell” in “Add build step”

•Apply patches and Building LTSI kernel

Prepare to use quilt
and cross compiler

Change patch of
Makefile and
KERNEL_VERSION
to suit LTSI kernel
version to Raspi
kernel version

Apply patches and Building kernel of raspi2
with dcm_2709_defconfig
Copy the kernel image for raspi and
create the Tarball of the kernel applied patches

© Mitsubishi Electric Corporation

②-4 Archive LTSI kernel Image & Source

• Set Post-build Actions

– Archive the artifacts

– Build other projects

– Delete workspace when build is done (optional)

• Using Workspace Cleanup Plugin

23

ltsi_*

Run_raspi

Set “ltsi_*” as file name for archiving (Wild-card can be used)
• The generated kernel Image: “ltsi_bzImage-[kernel version]”
• The generated kernel source: “ltsi_src-[kernel version]”

Set “Run_raspi” as next job to boot Raspberry Pi

Recommend to set “Delete workspace option”,
not using the workspace cache

© Mitsubishi Electric Corporation

② Build result and the artifacts

• Console Output

• The artifacts list

24

・・・・
Archiving artifacts
[WS-CLEANUP] Deleting project workspace...[WS-CLEANUP] done
Warning: you have no plugins providing access control for builds, so falling back
to legacy behavior of permitting any downstream builds to be triggered
Triggering a new build of Run_raspi
Finished: SUCCESS

<Artifacts>
Ltsi_bzImage-v4.1.21: the Kernel Image
Ltsi_src-v4.1.21 :Kernel source applied patches

Complete this Job!

© Mitsubishi Electric Corporation

③ Deploy & Boot the kernel

• Need the below preparation for booting automatically

1) U-boot for enabling Tftpboot on target

2) Device Tree Binary for booting target if needed like arm, ppc etc

3) RootFS for booting target if needed (Creating by Yocto)

4) TFTP Server and NFS Server for booting target remotely

25

Raspi
Tree

LTSI
Tree

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

③Deploy & Boot
the Kernel image

Raspberry Pi2

Root
FS

U-boot

Local /
Ethernet

Ethernet

© Mitsubishi Electric Corporation

③ Deploy & Boot (cont.)

• Deploy the kernel Image
– Copy the kernel image from the artifacts

• Boot the Linux
– Reset a target by remote power supply

– Boot automatically by Tftpboot of u-boot

26

Raspi
Tree

LTSI
Tree

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

③Deploy & Boot
the Kernel image

Raspberry Pi2

Root
FS

U-boot

Power
on/off

Local /
Ethernet

Ethernet

© Mitsubishi Electric Corporation

•Create a new Job

③ Deploy & Boot (cont.)

27

Run_raspi

Enter new job name

Build_kernel_raspi

Latest succesful build

ｌtsi_bzImage*

•Copy the artifact from build job to current job WS

Previous build job name

Only when build succeeds

Get the kernel image like
ltsi_bzImage-[kernel version]

© Mitsubishi Electric Corporation

③ Deploy & Boot (cont.)

• Run boot Shell script

– 1) Copy the artifact to TFTP directory

– 2) Turn power off & on with sleep by remote power supply
• Using telnet with expect command

– 3) Checking boot (check ping and get dmesg log)

28

Copy the artifact to TFTP directory

Check network & get the
dmesg

Turn power off and on.
Setpower.expect is the expected script
that connect automatically power supply.

Clean the tftpboot directory

© Mitsubishi Electric Corporation

③ Result of deploy & boot (cont.)

• Console output of checking network using ping

• Console output of dmesg on the target board

29

+ ping -c 10 192.168.7.12
PING 192.168.7.12 (192.168.7.12): 56 data bytes
64 bytes from 192.168.7.12: icmp_seq=0 ttl=64 time=0.739 ms
64 bytes from 192.168.7.12: icmp_seq=1 ttl=64 time=0.695 ms
64 bytes from 192.168.7.12: icmp_seq=2 ttl=64 time=1.040 ms

+ ssh -oStrictHostKeyChecking=no root@192.168.7.12 dmesg
[0.000000] Booting Linux on physical CPU 0xf00
[0.000000] Initializing cgroup subsys cpuset
[・・・・
[4.347269] IP-Config: Complete:
[4.350506] device=eth0, hwaddr=82:66:35:4c:16:e5, ipaddr=192.168.7.12, mask=255.255.255.0, gw=255.255.255.255
[4.361005] host=192.168.7.12, domain=, nis-domain=(none)
[4.366849] bootserver=192.168.7.3, rootserver=192.168.7.3, rootpath=
[4.374050] uart-pl011 3f201000.uart: no DMA platform data
[4.387281] VFS: Mounted root (nfs filesystem) on device 0:15.
[4.393682] devtmpfs: mounted
[4.397416] Freeing unused kernel memory: 444K (80795000 - 80804000)
[5.322347] random: nonblocking pool is initialized
[5.565450] udevd[101]: starting version 182
+ rm /userdata/work/tftpboot/zImage.ltsi.raspi [WS-CLEANUP] Deleting project workspace...
[WS-CLEANUP] done
Finished: SUCCESS

Network is working!

Get dmesg with ssh

Complete this Job!

© Mitsubishi Electric Corporation

• Created additional steps using Jenkins

Set up is done! Let’s try to run tests!

30

Fuego/AGL-JTA

LTS
Tree

LTSI
Tree

Target Board
Or Qemu

① Fetch source
from some repository

②Build the Kernel

TFTP Server
Kernel
image

SSH
Client

Test
Binary

④Build Test Case
for Target Board

Test
Results

log⑥Show Test Results

⑤Verify Test Result logs

Test
Cases

③Deploy & Boot
the Kernel image

Additional steps

Root
FS

U-boot

In-house
Tree Fuego standard functions

© Mitsubishi Electric Corporation

Utilizing OSS test suite

31

Test target

Test target

・・・

Te
st

 c
as

e

Te
st

 c
as

e

Te
st

 c
as

e
Test framework

Test
result

Common test environment

• How to utilize OSS test suite?

Creating all test cases is tough work
→ Utilize OSS test suite as much as
possible

© Mitsubishi Electric Corporation

About OSS test suite

• Waste much time for creating test cases sometimes
but, there are many OSS test suite for testing Linux
kernel

• Because OSS test suite could be created for specific
target or condition, some test case cannot be passed
on your test target

• But checking all test case of OSS test suite is tough
work also…

32

Share how to use OSS test suite easily,
using LTP as example

© Mitsubishi Electric Corporation

How to use OSS test suite

• When running OSS test suite on your target

– The first time

• You need to choose test case that can be used for your
target

→ Share how to categorize test case effectively, in case of
using OSS test suite

– From the second time

• You need to check if the result is acceptable or need further
investigation

→ Share how to check test result effectively

33

© Mitsubishi Electric Corporation
34

Need this procedure for each target

Procedure for the first time

Categorize test cases that
includes in OSS test suite

Choose the proper
category for test target

Run test case that is
chosen on the target

Check the result of test
case that output fail

All test cases
are passed?

The test cases and
results can be used

Yes

No

No target
issue?

Fix target issue

Modify test case or
remove it

Yes

No

You need to avoid to run
test case that is not for
the target because
tester wastes time to
check the result

You need to check even
pass case if you cannot
trust test suite quality.
But in this case, perhaps
you should not use it…

© Mitsubishi Electric Corporation
35

Need this procedure for each target

Procedure for the first time

Categorize test cases that
includes in OSS test suite

Choose the proper
category for test target

Run test case that is
chosen on the target

Check the result of test
case that output fail

All test cases
are passed?

The test cases and
results can be used

Yes

No

No target
issue?

Fix target issue

Modify test case or
remove it

Yes

No

Share the procedure of categorizing
only one time for each test suite

© Mitsubishi Electric Corporation

Categorize OSS test suite

• You need to choose test cases that can be used for
your target from OSS test suite

36

For Hardware1 For Hardware2 For 32bit For Kernel 4.X

OSS test suite
Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case ・・・

Test
case

Test
case

Test
case

Test
case

Test
case

Test
case

Categorize

・・・

Share how to categorize test cases, effectively

© Mitsubishi Electric Corporation

How to categorize test case

• Run the test suite that you would like to
categorize and compare the result on many
targets

• Choose targets in consideration of the below
perspectives

– Hardware difference

– Bit architecture difference

– Included package difference

– Kernel difference

There could be other perspectives.

37

© Mitsubishi Electric Corporation

Case study : categorize LTP test cases

• In consideration of the below perspectives, run
LTP and compare the results

– Hardware difference: Minnow board vs Raspberry Pi2

– Bit architecture difference: 32bit vs 64bit

– Included package difference: minimal vs with GUI

• core-image-minimal vs core-image-sato (on Yocto Project)

– Kernel difference: 3.18 vs 4.1

38

© Mitsubishi Electric Corporation

Result summary

39

• TPASS - Indicates that the test case had the expected result and passed

• TWARN - Indicates that the test case experienced an unexpected or undesirable event that should not affect the test itself
such as being unable to cleanup resources after the test finished.

• TCONF - Indicates that the test case was not written to run on the current hardware or software configuration such as
machine type, or, kernel version.

• TFAIL - Indicates that the test case had an unexpected result and failed.

• TBROK - Indicates that the remaining test cases are broken and will not execute correctly, because some precondition not
met, such as a resource not being available.

case 1 2 3 4 5

Hardware Minnow
board (32bit)

Minnow
board (64bit)

Raspberry Pi2 Raspberry Pi2 Raspberry Pi2

Kernel 4.1.8 4.1.8 3.18.11 4.1.10 4.1.10

Userland core-image-
sato

core-image-
sato

core-image-
sato

core-image-
sato

core-image-
minimal

TPASS 938 868 934 934 933

TWARN 3 3 0 0 0

TCONF 64 134 70 70 70

TFAIL 3 3 3 3 3

TBROK 54 54 55 55 56

© Mitsubishi Electric Corporation

Check TWARN/TFAIL

40

case 1 2 3 4 5

Hardware Minnow
board (32bit)

Minnow
board (64bit)

Raspberry Pi2 Raspberry Pi2 Raspberry Pi2

Kernel 4.1.8 4.1.8 3.18.11 4.1.10 4.1.10

Userland core-image-
sato

core-image-
sato

core-image-
sato

core-image-
sato

core-image-
minimal

TPASS 938 868 934 934 933

TWARN 3 3 0 0 0

TCONF 64 134 70 70 70

TFAIL 3 3 3 3 3

TBROK 54 54 55 55 56

• TWARN 3 items: Occurred on Minnow board only.
• TFAIL 3 items: The results of all cases are same. There might be no

dependency.

© Mitsubishi Electric Corporation

Check TBROK

41

case 1 2 3 4 5

Hardware Minnow
board (32bit)

Minnow
board (64bit)

Raspberry Pi2 Raspberry Pi2 Raspberry Pi2

Kernel 4.1.8 4.1.8 3.18.11 4.1.10 4.1.10

Userland core-image-
sato

core-image-
sato

core-image-
sato

core-image-
sato

core-image-
minimal

TPASS 938 868 934 934 933

TWARN 3 3 0 0 0

TCONF 64 134 70 70 70

TFAIL 3 3 3 3 3

TBROK 54 54 55 55 56

• The results of each cases are same, excepting the below.
– 1 item: NOT occurred on Minnow board (32bit).
– 1 item: Occurred on Raspberry Pi2 only.
– 1 item: Occurred on core-image-minimal only.

© Mitsubishi Electric Corporation

Check TCONF

42

case 1 2 3 4 5

Hardware Minnow
board (32bit)

Minnow
board (64bit)

Raspberry Pi2 Raspberry Pi2 Raspberry Pi2

Kernel 4.1.8 4.1.8 3.18.11 4.1.10 4.1.10

Userland core-image-
sato

core-image-
sato

core-image-
sato

core-image-
sato

core-image-
minimal

TPASS 938 868 934 934 933

TWARN 3 3 0 0 0

TCONF 64 134 70 70 70

TFAIL 3 3 3 3 3

TBROK 54 54 55 55 56

• The results of each cases are same, excepting the below.
• 10 items: NOT occurred on Minnow board (32bit).
• 1 item: Occurred on Raspberry Pi2 only.
• 2 items: Occurred on Minnow board only.
• 66 items: Occurred on Minnow board (64bit) only.
• 3 items: NOT occurred on Minnow board (64bit).

© Mitsubishi Electric Corporation

The details of test case

• The below test cases could be depending on Hardware. (7items)
• Raspberry Pi2 only

– clock_getres01 (TCONF)
– getrusage04 (TBROK)

• Minnow board only
– fanotify05, fanotify06 (TCONF)
– Fanotify01, fanotify02, fanotify04 (TWARN)

• The below test cases could be depending on bit architecture. (69items)
– Minnow 64bit only

• bdflush01, chown01_16, chown02_16, chown03_16, chown05_16, fchown01_16, fchown02_16, fchown03_16, fchown05_16,
fstatat01, fstatat01_64, getegid01_16, getegid02_16, geteuid01_16, geteuid02_16, getgid01_16, getgid03_16, getgroups01_16,
getgroups03_16, getuid01_16, getuid03_16, lchown01_16, lchown02_16, modify_ldt01, modify_ldt02, modify_ldt03, setfsgid01_16,
setfsgid02_16, setfsgid03_16, setfsuid01_16, setfsuid02_16, setfsuid03_16, setfsuid04_16, setgid01_16, setgid02_16, setgid03_16,
setgroups01_16, setgroups02_16, setgroups03_16, setgroups04_16, setregid01_16, setregid03_16, setregid04_16, setresgid01_16,
setresgid02_16, setresgid03_16, setresgid04_16, setresuid01_16, setresuid02_16, setresuid03_16, setresuid04_16, setresuid05_16,
setreuid01_16, setreuid02_16, setreuid03_16, setreuid04_16, setreuid05_16, setreuid06_16, setreuid07_16, setuid01_16,
setuid02_16, setuid03_16, setuid04_16 (TCONF)

– Other than Minnow 64bit
• fork14, getcpu01, mmap15 (TCONF)

• The below test cases could be depending on User land. (1item)
– core-image-minimal only.

• Utimensat01 (TBROK)

• The below test cases could be depending on Minnow 32bit. (11items)
– Other than Minnow 32bit

• eventfd01, io_cancel01, io_destroy01, io_getevents01, io_setup01, io_submit01, readdir21, sgetmask01, set_thread_area01,
ssetmask01 (TCONF)

• syslog08 (TBROK)

There is no items that depends on Kernel version.

43

© Mitsubishi Electric Corporation

The details of test case

• The below test cases could be depending on Hardware. (7items)
• Raspberry Pi2 only

– clock_getres01 (TCONF)
– getrusage04 (TBROK)

• Minnow board only
– fanotify05, fanotify06 (TCONF)
– Fanotify01, fanotify02, fanotify04 (TWARN)

– The below test cases could be depending on bit architecture. (69items)
• Minnow 64bit only

– bdflush01, chown01_16, chown02_16, chown03_16, chown05_16, fchown01_16, fchown02_16, fchown03_16, fchown05_16, fstatat01,
fstatat01_64, getegid01_16, getegid02_16, geteuid01_16, geteuid02_16, getgid01_16, getgid03_16, getgroups01_16, getgroups03_16,
getuid01_16, getuid03_16, lchown01_16, lchown02_16, modify_ldt01, modify_ldt02, modify_ldt03, setfsgid01_16, setfsgid02_16,
setfsgid03_16, setfsuid01_16, setfsuid02_16, setfsuid03_16, setfsuid04_16, setgid01_16, setgid02_16, setgid03_16, setgroups01_16,
setgroups02_16, setgroups03_16, setgroups04_16, setregid01_16, setregid03_16, setregid04_16, setresgid01_16, setresgid02_16,
setresgid03_16, setresgid04_16, setresuid01_16, setresuid02_16, setresuid03_16, setresuid04_16, setresuid05_16, setreuid01_16,
setreuid02_16, setreuid03_16, setreuid04_16, setreuid05_16, setreuid06_16, setreuid07_16, setuid01_16, setuid02_16, setuid03_16,
setuid04_16 (TCONF)

• Other than Minnow 64bit
– fork14, getcpu01, mmap15 (TCONF)

– The below test cases could be depending on User land. (1item)
• core-image-minimal only.

– Utimensat01 (TBROK)

– The below test cases could be depending on Minnow 32bit. (11items)
• Other than Minnow 32bit

– eventfd01, io_cancel01, io_destroy01, io_getevents01, io_setup01, io_submit01, readdir21, sgetmask01, set_thread_area01,
ssetmask01 (TCONF)

– syslog08 (TBROK)

There is no items that depends on Kernel.

44

Categorized test case for:
• Hardware: ARM or Intel or Both
• Bit architecture: 32bit or 64bit or Both
• Included package (Userland)
• Kernel Version

You can choose test cases from the category that suits
each target specification

© Mitsubishi Electric Corporation

Procedure from the second time

• Comparing with the result of last time, you can
easily check if there is degrading or not

45

Run test case that is
executed at first time

• No degrading
→ You check result
summary if needed

All result
is same as
last time?

Pass

• Could be degrading
→ You need to investigate
test result that is not same
as last time in the detail

Fail

Judge automatically by script
Need to create it for each test
suite because result format
depends on test suite

© Mitsubishi Electric Corporation

Conclusion

• Summary
– Test framework like Fuego can be utilized for the

development using Linux
– When using Fuego with customization, automated test can

be triggered by software update
– Categorizing test cases and comparing test results can ease

using OSS test suite such as LTP

• Future Works
– Create automated test environment that is triggered by

software update using QEMU
– Consider the way to compare test results with those of last

time easily
• Dependency of result format should be decreased

46

© Mitsubishi Electric Corporation

Reference

• LTSI project :
– http://ltsi.linuxfoundation.org/

• LTSI Test project:
– http://ltsi.linuxfoundation.org/ltsi-test-project
– Test Framework(Fuego):

• https://bitbucket.org/cogentembedded/jta-public.git

• AGL Test framework(AGL-JTA) :
– https://wiki.automotivelinux.org/agl-jta

• Linux Test Project
– http://linux-test-project.github.io/

• Introduction to the Fuego test system By Tim Bird
– http://events.linuxfoundation.org/sites/events/files/slides/Introductio

n-to-Fuego.pdf

• Unveil How to Customize LTSI Test For Your Platform
– http://events.linuxfoundation.org/sites/events/files/slides/ELCE2015-

LTSI_Test_Project.pdf

47

http://ltsi.linuxfoundation.org/
http://ltsi.linuxfoundation.org/ltsi-test-project
https://bitbucket.org/cogentembedded/jta-public.git
https://wiki.automotivelinux.org/agl-jta
http://linux-test-project.github.io/
http://events.linuxfoundation.org/sites/events/files/slides/Introduction-to-Fuego.pdf
http://events.linuxfoundation.org/sites/events/files/slides/ELCE2015-LTSI_Test_Project.pdf

© Mitsubishi Electric Corporation

Thank you!!

Questions?

48

