

Using SCHED_DEADLINE

Steven Rostedt
rostedt@goodmis.org
srostedt@redhat.com

Controlling CPU Bandwidth

mailto:rostedt@goodmis.org

What is SCHED_DEADLINE?

A new scheduling class

others are: SCHED_OTHER, SCHED_FIFO, SCHED_RR

Constant Bandwidth Scheduler

Earliest Deadline First

Other Schedulers

SCHED_OTHER

Completely Fair Scheduler (CFS)

Uses “nice” priority

Each task gets a fair share of the CPU bandwidth

SCHED_FIFO

First in, first out

Each task runs till it gives up the CPU or a higher
priority task preempts it

SCHED_RR

Like SCHED_FIFO but same prio tasks get slices of CPU

SCHED_RR (Round Robin)

CPU 1 CPU 2

RR Prio 5
50 %

RR Prio 5
50 %

RR Prio 5
100 %

Priorities

You have two programs running on the same CPU

One runs a nuclear power plant

Requires 1/2 second out of every second of the CPU

The other runs a washing machine

Requires 50 millisecond out of every 200 milliseconds

Which one gets the higher priority?

Priorities

Priorities Nuke > Washing Machine

Priorities Nuke < Washing Machine

Rate Monotonic Scheduling (RMS)

Computational time vs Period

Can be implemented by SCHED_FIFO

Smallest period gets highest priority

Compute computation time (C)

Compute period time (T)

U=∑
i=1

n Ci

T i

Rate Monotonic Scheduling (RMS)

Add a Dishwasher to the mix...

Nuclear Power Plant : C = 500ms T=1000ms

Dishwasher: C = 300ms T = 900ms

Washing Machine: C = 100ms T = 800ms

U=
500
1000

+
300
900

+
100
800

= .958333

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13

Rate Monotonic Scheduling (RMS)

0 1 12111098765432 13
FAILED!

Rate Monotonic Scheduling (RMS)

Computational time vs Period

Can be implemented by SCHED_FIFO

Smallest period gets highest priority

Compute computation time (C)

Compute period time (T)

U=∑
i=1

n Ci

T i

Rate Monotonic Scheduling (RMS)

Computational time vs Period

Can be implemented by SCHED_FIFO

Smallest period gets highest priority

Compute computation time (C)

Compute period time (T)

U=∑
i=1

n Ci

T i

≤n(n√2−1)

Rate Monotonic Scheduling (RMS)

Add a Dishwasher to the mix...

Nuclear Power Plant : C = 500ms T=1000ms

Dishwasher: C = 300ms T = 900ms

Washing Machine: C = 100ms T = 800ms

U=
500
1000

+
300
900

+
100
800

= .958333

Rate Monotonic Scheduling (RMS)

Add a Dishwasher to the mix...

Nuclear Power Plant : C = 500ms T=1000ms

Dishwasher: C = 300ms T = 900ms

Washing Machine: C = 100ms T = 800ms

U=
500
1000

+
300
900

+
100
800

= .958333

U≤n(n√2−1)=3 (3√2−1)=0.77976

Rate Monotonic Scheduling (RMS)

U=∑
i=1

n Ci

T i

≤n(n√2−1)

lim
n→∞

n(n√2−1)= ln 2≈0.693147

SCHED_DEADLINE

Utilizes Earliest Deadline First (EDF)

Dynamic priority

The task with next deadline has highest priority

U=∑
i=1

n Ci

T i

=1

Earliest Deadline First (EDF)

0 1 12111098765432 13

Earliest Deadline First (EDF)

0 1 12111098765432 13

Earliest Deadline First (EDF)

0 1 12111098765432 13

Earliest Deadline First (EDF)

0 1 12111098765432 13

Earliest Deadline First (EDF)

0 1 12111098765432 13
:) HAPPY :)

Earliest Deadline First (EDF)

0 1 12111098765432 13

Earliest Deadline First (EDF)

0 1 12111098765432 13

Implementing SCHED_DEADLINE

Two new syscalls

sched_getattr(pid_t pid, struct sched_attr *attr,
 unsigned int size, unsigned int flags)

sched_setattr(pid_t pid, struct sched_attr *attr,
 unsigned int flags)

Implementing SCHED_DEADLINE

struct sched_attr {
 u32 size; /* Size of this structure */
 u32 sched_policy; /* Policy (SCHED_*) */
 u64 sched_flags; /* Flags */
 s32 sched_nice; /* Nice value (SCHED_OTHER,
 SCHED_BATCH) */
 u32 sched_priority; /* Static priority (SCHED_FIFO,
 SCHED_RR) */
 /* Remaining fields are for SCHED_DEADLINE */
 u64 sched_runtime;
 u64 sched_deadline;
 u64 sched_period;
};

Implementing SCHED_DEADLINE

struct sched_attr attr;

ret = sched_getattr(0, &attr, sizeof(attr), 0);
if (ret < 0)

error();

attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = runtime_ns;
attr.sched_deadline = deadline_ns;

ret = sched_setattr(0, &attr, 0);
if (ret < 0)

error();

sched_yield()

Most use cases are buggy

Most tasks will not give up the CPU

SCHED_OTHER

Gives up current CPU time slice

SCHED_FIFO / SCHED_RR

Gives up the CPU to a task of the SAME PRIORITY

Voluntary scheduling among same priority tasks

sched_yield()

Buggy code!

again:
pthread_mutex_lock(&mutex_A);
B = A->B;

if (pthread_mutex_trylock(&B->mutex_B)) {
pthread_mutex_unlock(&mutex_A);
sched_yield();
goto again;

}

sched_yield()

What you want for SCHED_DEADLINE!

Tells the kernel the task is done with current
period

Used to relinquish the rest of the runtime budget

Donut Hole Puncher!

Deadline vs Period

Can't have offset holes in our donuts

Have a specific deadline to make within a period

 runtime <= deadline <= period

U=∑
i=1

n C i

Di

=1

Multi processors!

It's all fun and games until someone throws
another processor into your eye

Multi processors! (Dhall's Effect)

M CPUs

M+1 tasks

One task with runtime 999ms out of 1000ms

M tasks of runtime of 10ms out of 999ms

All start at the same time

The M tasks have a shorted deadline

All M tasks run on all CPUs for 10ms

That one task now only has 990 ms left to run
999ms.

Multi processors!

EDF can not give you better than U = 1

No matter how many processors you have

Two methods

Partitioning (Bind each task to a CPU)

Global (let all tasks migrate wherever)

Neither give better than U = 1 guarantees

Multi processors!

EDF partitioned

Can not always be used:

U_t1 = .6

U_t2 = .6

U_t3 = .5

The above would need special scheduling to work anyway

To figure out the best utilization is the bin packing
problem

Sorry folks, it's NP complete

Don't even bother trying

Multi processors!

Global Earliest Deadline First (gEDF)

Can not guarantee deadlines of U > 1 for all
cases

But special cases can be satisfied for U > 1

D_i = P_i

U_max = max{C_i/P_i}

U=∑
i=1

n Ci

Pi

≤M−(M−1)∗U max

Multi processors!

M = 8

U_max = 0.5

U=∑
i=1

n Ci

Pi

≤M−(M−1)∗U max

U=∑
i=1

n Ci

Pi

≤8−(7)∗.5=4.5

The limits of SCHED_DEADLINE

Runs on all CPUS (well sorta)

No limited sched affinity allowed

Global EDF is the default

Must account for sched migration overheads

Can not have children (no forking)

Your SCHED_DEADLINE tasks have been fixed

Calculating Worse Case Execution Time (WCET)

If you get it wrong, SCHED_DEADLINE may throttle your task
before it finishes

Giving SCHED_DEADLINE Affinity

Setting task affinity on SCHED_DEADLINE is not
allowed

But you can limit them by creating new sched
domains

CPU sets

Implementing Partitioned EDF

Giving SCHED_DEADLINE Affinity

cd /sys/fs/cgroup/cpuset

mkdir my_set

mkdir other_set

echo 0-2 > other_set/cpuset.cpus

echo 0 > other_set/cpuset.mems

echo 1 > other_set/cpuset.sched_load_balance

echo 1 > other_set/cpuset.cpu_exclusive

echo 3 > my_set/cpuset.cpus

echo 0 > my_set/cpuset.mems

echo 1 > my_set/cpuset.sched_load_balance

echo 1 > my_set/cpuset.cpu_exclusive

echo 0 > cpuset.sched_load_balance

Giving SCHED_DEADLINE Affinity

cat tasks | while read task; do

echo $task > other_set/tasks

done

echo $sched_deadline_task > my_set/tasks

Calculating WCET

Today's hardware is extremely unpredictable

Worse Case Execution Time is impossible to
know

Allocate too much bandwidth instead

Need something between RMS and CBS

GRUB (not the boot loader)

Greedy Reclaim of Unused Bandwidth

Allows for SCHED_DEADLINE tasks to use up the
unused utilization of the CPU (or part of it)

Allows for tasks to handle WCET of a bit more
than calculated.

Not mainline yet, but we are working on that

Links

Documentation/scheduler/sched_deadline.txt

http://disi.unitn.it/~abeni/reclaiming/rtlws14-grub.pdf

http://www.evidence.eu.com/sched_deadline.html

http://www.atc.uniovi.es/rsa/starts/documents/Lopez_2004_rts.pdf

https://cs.unc.edu/~anderson/papers/rtj06a.pdf

http://disi.unitn.it/~abeni/reclaiming/rtlws14-grub.pdf
http://www.evidence.eu.com/sched_deadline.html
http://www.atc.uniovi.es/rsa/starts/documents/Lopez_2004_rts.pdf
https://cs.unc.edu/~anderson/papers/rtj06a.pdf

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

