
Porting Android ICS to a custom board
A war story

Matthias Brugger

Outline

● Android beyond smartphones?
● Why a war story
● Our custom board
● Android building system
● Lessons learned

● Add device
● Bootloader/Kernel integration
● Powersupply
● Button
● Touchscreen calibration
● Wi-Fi
● Sound
● HW acceleration

ELCE 2012 – Porting Android ICS

Android beyond smartphones?

✗ Integrate native application
✗ Porting to a new board can be a war story

ELCE 2012 – Porting Android ICS

✔ Easy to implement applications (SDK, API, Java)
✔ Human-Machine-Interface

✔ well defined
✔ tested in the wild

✔ Reliability of the system
► good for HMI centred embedded systems

Why is it a war story

● Little documentation
● Small community
● Vendor specific communities
● Developing process of Android
● A huge jungle of programming languages

ELCE 2012 – Porting Android ICS

Why is it a war story

● Android is Linux, but... Android is not Linux!
● Patched Kernel adds new features
● Userspace varies widely

● Own libc (bionic)
● Lots of basic building blocks are not integrated

● XWindows
● Busybox

● Core system is executed on dalvikVM
● IPC implementation (binder) varies from SystemV
● Building blocks are compiled to dynamic libraries

which are loaded by the core system in different ways and layers

ELCE 2012 – Porting Android ICS

Why is it a war story

ELCE 2012 – Porting Android ICS

Our custom board

ELCE 2012 – Porting Android ICS

Our custom board

● One button only
● No phone
● No battery monitor
● Ethernet
● Wifi
● Touchscreen
● Sound
● HW acceleration from OMAP3

ELCE 2012 – Porting Android ICS

Android building system

● Important folders
● build
● frameworks/base
● external
● hardware
● device
● out/target/product/<product_name>

ELCE 2012 – Porting Android ICS

Lesson learned I: Add device to our build

● Devices are found under device/<manufactor>/<board> folder
● <device_name>.mk

● Define which basic packages to install for the board
● Inherit from default product (in build/target/product)
● Add the proper device:

● device.mk
● Define files that have to be copyed to the rootfs
● Define where to find the overlay

● BoardConfig.mk
● Define build flags

● vendorsetup.sh
● Add lunch menu option

ELCE 2012 – Porting Android ICS

Lessons Learned II: Bootloader/Kernel integration

● Problems
● In AOSP precompiled Kernel image
● Specific compiler needed?

● Solution
● We add a “wrapper” in the Makefile
● After building the android “userspace” build

● Bootloader
● Kernel
● Copy kernel modules to out/target/product

● Extra boot parameter:
● androidboot.console=ttyO2
● init=/init

ELCE 2012 – Porting Android ICS

Lessons Learned III: Powersupply
● Boot hangs on splash screen
● Have a look with logcat what's going on

ELCE 2012 – Porting Android ICS

E/BatteryService(1008): Could not open /sys/class/power_supply
(…)
I/SystemServer(1008): Battery Service
W/dalvikvm(1008): No implementation found for native Lcom/android/server/BatteryService;.native_update ()V
W/dalvikvm(1008): threadid=11: thread exiting with uncaught exception (group=0x409e11f8)
I/Process (1008): Sending signal. PID: 1008 SIG: 9
E/AndroidRuntime(1008): *** FATAL EXCEPTION IN SYSTEM PROCESS: android.server.ServerThread
E/AndroidRuntime(1008): java.lang.UnsatisfiedLinkError: native_update
E/AndroidRuntime(1008): at com.android.server.BatteryService.native_update(Native Method)
E/AndroidRuntime(1008): at com.android.server.BatteryService.update(BatteryService.java:233)
E/AndroidRuntime(1008): at com.android.server.BatteryService.<init>(BatteryService.java:148)
E/AndroidRuntime(1008): at com.android.server.ServerThread.run(SystemServer.java:196)
I/Zygote (967): Exit zygote because system server (1008) has terminated
E/installd(913): eof
E/installd(913): failed to read size
I/installd(913): closing connection
I/installd(913): new connection
I/ServiceManager(903): service 'gfxinfo' died
I/ServiceManager(903): service 'activity' died
I/ServiceManager(903): service 'cpuinfo' died
I/ServiceManager(903): service 'sensorservice' died
I/ServiceManager(903): service 'meminfo' died
I/ServiceManager(903): service 'account' died
I/ServiceManager(903): service 'usagestats' died
I/ServiceManager(903): service 'permission' died
I/ServiceManager(903): service 'hardware' died
I/ServiceManager(903): service 'content' died
(...)

Lessons Learned III: Powersupply

ELCE 2012 – Porting Android ICS

Lessons Learned III: Powersupply

ELCE 2012 – Porting Android ICS

Lessons Learned III: Powersupply
● What has happened?

● When JNI is loaded, it registers the low level services (e.g. BatteryService)
● read values from sysfs
● BatteryService JNI registers function native_update at BatteryService.java

● But...
● BatteryService JNI interface doesn't find “/sys/class/power_supply”
● Returns error, which is ignored by JNI_OnLoad

● SystemServer thread creates BatteryService when executed
● BatteryService tries to update values invoking native_update
● No JNI interface registered – SystemServer dies...

ELCE 2012 – Porting Android ICS

● Solution
● No working battery monitor in our system

→ No power supply class in kernel
● Adding the power supply class

● Shows battery empty warning in status bar
● Add the “test power driver”

● Shows Battery at 50% charging fixed

● Has influence on the behaviour of the Power Manager

ELCE 2012 – Porting Android ICS

Lessons Learned III: Powersupply

Lessons Learned IV: Button Integration
● Can be found in frameworks/base/services/input:

● Android scans /dev/input folder in a loop
● Polls for events using epoll
● Identifies touchscreens, joysticks, mice, keyboards automatically

● Key Layout File (/system/usr/keylayout) maps raw input key to
internal Android key representation

● Key Char Map File (/system/usr/keychars) describes
action for internal Android key

ELCE 2012 – Porting Android ICS

Lessons Learned IV: Button Integration
● Our case

● Just one button, no external keyboard
● Two alternatives:

● Define own Key Layout/Key Char Map files
● Configure key code in kernel appropriately
● Beware Key Layout File uses numeric number of key code
● Not all values in Key Layout have a define in include/linux/input.h

ELCE 2012 – Porting Android ICS

Lessons Learned V: Touchscreen calibration
● Detection and input analogous to button integration
● Driver sends X-Y-coordinates

● Callibrate the touchscreen
● We have to reach all parts of the screen easily

● Turn on show touches in Settings/Developer options
● Adjust max and min values of your touchscreen in the plattform data

ELCE 2012 – Porting Android ICS

Lessons Learned VI: Wi-Fi

● Example of complexity of Android source code
● Different libraries and services
● 5 different folders with userspace code

● Uses wpa_supplicant to connect to a protected WLAN
● Enhanced with Android specific commands

● START, STOP, SCAN-ACTIVE, SCAN-PASSIVE, RSSI, LINKSPEED, …

ELCE 2012 – Porting Android ICS

Lessons Learned VI: Wi-Fi

ELCE 2012 – Porting Android ICS

Lessons Learned VI: Wi-Fi

● Integration
● Legacy implementation reads wpa supplicant config file

● /data/misc/wifi/wpa_supplicant.conf → product specific
● /system/etc/wifi/wpa_supplicant.conf → template

● Kernel and firmware module
● In BoardConfig.mk define:

● WIFI_DRIVER_MODULE_PATH
● WIFI_DRIVER_MODULE_NAME
● WIFI_FIRMWARE_LOADER

● Hardware legacy layer in charge of loading/unloading
kernel module and firmware; starts/stops wpa_supplicant

● Start wpa_supplicant and dhcp for wlan
● service wpa_supplicant /system/bin/wpa_supplicant -Dwext -iwlan0
● service dhcpcd_wlan0 /system/bin/dhcpcd -ABKL

ELCE 2012 – Porting Android ICS

Lessons Learned VII: Audio
● Audio player is stagefright
● AudioFlinger interfaces hardware abstraction

● Uses struct audio_hw_device in hardware/libhardware/include
● audio.primary.<device_name>

● Encapsulates the hardware - custom implementation

ELCE 2012 – Porting Android ICS

Lessons Learned VIII: Hardware Acceleration
● Two possibilities

● Integrate mulitmedia framework supporting HW acceleration
✔ Has bindings for HW accelerator
✔ Might have more codecs then stagefright

✗ Maintenace might be costly

● Integrate HW acceleration support in existing Android multimedia framework
✔ Should be easy to maintain

✗ Need to create bindings for the HW accelerator

ELCE 2012 – Porting Android ICS

ELCE 2012 – Porting Android ICS

Lessons Learned VIII: Hardware Acceleration

libmediaplayerservice:

Lessons Learned VIII: Hardware Acceleration
● Add own multimedia framework

● Register your framework as MediaPlayerInterface
● Create player instance in MediaPlayerService
● Implement new MetadataRetriever in MetadataRetrieverClient

● Implement wrapper
● Audio sink using AudioTrack
● Video sink using Surface

ELCE 2012 – Porting Android ICS

ELCE 2012 – Porting Android ICS

Lessons Learned VIII: Hardware Acceleration

libsurfaceflinger:

ELCE 2012 – Porting Android ICS

Lessons Learned VI: Hardware Acceleration

libstagefright:

Porting Android ICS to a custom board
A war story

mbrugger@iseebcn.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

