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Android beyond smartphones?

✗ Integrate native application
✗ Porting to a new board can be a war story
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✔ Easy to implement applications (SDK, API, Java)
✔ Human-Machine-Interface

✔ well defined 
✔ tested in the wild

✔ Reliability of the system
► good for HMI centred embedded systems



Why is it a war story

● Little documentation
● Small community
● Vendor specific communities
● Developing process of Android
● A huge jungle of programming languages
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Why is it a war story

● Android is Linux, but... Android is not Linux!
● Patched Kernel adds new features
● Userspace varies widely

● Own libc (bionic)
● Lots of basic building blocks are not integrated

● XWindows
● Busybox

● Core system is executed on dalvikVM
● IPC implementation (binder) varies from SystemV
● Building blocks are compiled to dynamic libraries 

which are loaded by the core system in different ways and layers
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Why is it a war story
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Our custom board
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Our custom board

● One button only
● No phone
● No battery monitor
● Ethernet
● Wifi
● Touchscreen
● Sound
● HW acceleration from OMAP3
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Android building system

● Important folders
● build
● frameworks/base
● external
● hardware
● device
● out/target/product/<product_name>
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Lesson learned I: Add device to our build

● Devices are found under device/<manufactor>/<board> folder
● <device_name>.mk

● Define which basic packages to install for the board
● Inherit from default product (in build/target/product)
● Add the proper device:

● device.mk
● Define files that have to be copyed to the rootfs
● Define where to find the overlay

● BoardConfig.mk
● Define build flags

● vendorsetup.sh
● Add lunch menu option
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Lessons Learned II: Bootloader/Kernel integration

● Problems
● In AOSP precompiled Kernel image 
● Specific compiler needed?

● Solution
● We add a “wrapper” in the Makefile
● After building the android “userspace” build 

● Bootloader
● Kernel
● Copy kernel modules to out/target/product

● Extra boot parameter:
● androidboot.console=ttyO2
● init=/init
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Lessons Learned III: Powersupply
● Boot hangs on splash screen
● Have a look with logcat what's going on
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E/BatteryService( 1008): Could not open /sys/class/power_supply
(…)
I/SystemServer( 1008): Battery Service
W/dalvikvm( 1008): No implementation found for native Lcom/android/server/BatteryService;.native_update ()V
W/dalvikvm( 1008): threadid=11: thread exiting with uncaught exception (group=0x409e11f8)
I/Process ( 1008): Sending signal. PID: 1008 SIG: 9
E/AndroidRuntime( 1008): *** FATAL EXCEPTION IN SYSTEM PROCESS: android.server.ServerThread
E/AndroidRuntime( 1008): java.lang.UnsatisfiedLinkError: native_update
E/AndroidRuntime( 1008): at com.android.server.BatteryService.native_update(Native Method)
E/AndroidRuntime( 1008): at com.android.server.BatteryService.update(BatteryService.java:233)
E/AndroidRuntime( 1008): at com.android.server.BatteryService.<init>(BatteryService.java:148)
E/AndroidRuntime( 1008): at com.android.server.ServerThread.run(SystemServer.java:196)
I/Zygote  (  967): Exit zygote because system server (1008) has terminated
E/installd(  913): eof
E/installd(  913): failed to read size
I/installd(  913): closing connection
I/installd(  913): new connection
I/ServiceManager(  903): service 'gfxinfo' died
I/ServiceManager(  903): service 'activity' died
I/ServiceManager(  903): service 'cpuinfo' died
I/ServiceManager(  903): service 'sensorservice' died
I/ServiceManager(  903): service 'meminfo' died
I/ServiceManager(  903): service 'account' died
I/ServiceManager(  903): service 'usagestats' died
I/ServiceManager(  903): service 'permission' died
I/ServiceManager(  903): service 'hardware' died
I/ServiceManager(  903): service 'content' died
(...)

Lessons Learned III: Powersupply
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Lessons Learned III: Powersupply
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Lessons Learned III: Powersupply
● What has happened?

● When JNI is loaded, it registers the low level services (e.g. BatteryService)
● read values from sysfs
● BatteryService JNI registers function native_update at BatteryService.java

● But...
● BatteryService JNI interface doesn't find “/sys/class/power_supply”
● Returns error, which is ignored by JNI_OnLoad

● SystemServer thread creates BatteryService when executed
● BatteryService tries to update values invoking native_update
● No JNI interface registered – SystemServer dies...
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● Solution
● No working battery monitor in our system

→ No power supply class in kernel
●  Adding the power supply class

● Shows battery empty warning in status bar
●  Add the “test power driver” 

● Shows Battery at 50% charging fixed

● Has influence on the behaviour of the Power Manager

ELCE 2012 – Porting Android ICS

Lessons Learned III: Powersupply



Lessons Learned IV: Button Integration
● Can be found in frameworks/base/services/input:

● Android scans /dev/input folder in a loop
● Polls for events using epoll
● Identifies touchscreens, joysticks, mice, keyboards automatically

● Key Layout File (/system/usr/keylayout) maps raw input key to 
internal Android key representation

● Key Char Map File (/system/usr/keychars) describes 
action for internal Android key
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Lessons Learned IV: Button Integration
● Our case

● Just one button, no external keyboard
● Two alternatives:

● Define own Key Layout/Key Char Map files
● Configure key code in kernel appropriately
● Beware Key Layout File uses numeric number of key code
● Not all values in Key Layout have a define in include/linux/input.h
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Lessons Learned V: Touchscreen calibration
● Detection and input analogous to button integration
● Driver sends X-Y-coordinates 

● Callibrate the touchscreen
● We have to reach all parts of the screen easily

● Turn on show touches in Settings/Developer options
● Adjust max and min values of your touchscreen in the plattform data
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Lessons Learned VI: Wi-Fi

● Example of complexity of Android source code
● Different libraries and services
● 5 different folders with userspace code

● Uses wpa_supplicant to connect to a protected WLAN
● Enhanced with Android specific commands

● START, STOP, SCAN-ACTIVE, SCAN-PASSIVE, RSSI, LINKSPEED, …
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Lessons Learned VI: Wi-Fi
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Lessons Learned VI: Wi-Fi

● Integration
● Legacy implementation reads wpa supplicant config file

● /data/misc/wifi/wpa_supplicant.conf   → product specific
● /system/etc/wifi/wpa_supplicant.conf → template

● Kernel and firmware module
● In BoardConfig.mk define:

● WIFI_DRIVER_MODULE_PATH
● WIFI_DRIVER_MODULE_NAME
● WIFI_FIRMWARE_LOADER

● Hardware legacy layer in charge of loading/unloading
kernel module and firmware; starts/stops wpa_supplicant

● Start wpa_supplicant and dhcp for wlan
● service wpa_supplicant /system/bin/wpa_supplicant -Dwext -iwlan0
● service dhcpcd_wlan0 /system/bin/dhcpcd -ABKL
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Lessons Learned VII: Audio
● Audio player is stagefright
● AudioFlinger interfaces hardware abstraction

● Uses struct audio_hw_device in hardware/libhardware/include
● audio.primary.<device_name>

● Encapsulates the hardware - custom implementation
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Lessons Learned VIII: Hardware Acceleration
● Two possibilities

● Integrate mulitmedia framework supporting HW acceleration
✔ Has bindings for HW accelerator
✔ Might have more codecs then stagefright

✗ Maintenace might be costly

● Integrate HW acceleration support in existing Android multimedia framework
✔ Should be easy to maintain

✗ Need to create bindings for the HW accelerator
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Lessons Learned VIII: Hardware Acceleration

libmediaplayerservice:



Lessons Learned VIII: Hardware Acceleration
● Add own multimedia framework

● Register your framework as MediaPlayerInterface
● Create player instance in MediaPlayerService
● Implement new MetadataRetriever in MetadataRetrieverClient  

● Implement wrapper
● Audio sink using AudioTrack
● Video sink using Surface
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Lessons Learned VIII: Hardware Acceleration

libsurfaceflinger:
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Lessons Learned VI: Hardware Acceleration

libstagefright:



Porting Android ICS to a custom board
A war story
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