Difference between revisions of "ECE434 Project-Infinity Mirror"

From eLinux.org
Jump to: navigation, search
(User Instructions)
(Installation Instructions)
Line 52: Line 52:
  
 
https://markayoder.github.io/PRUCookbook/05blocks/blocks.html
 
https://markayoder.github.io/PRUCookbook/05blocks/blocks.html
 +
 +
Physical Pinout:
 +
 +
·P9_29 → LED Strip data line
 +
 +
·P9_40 → Microphone Digital Output
  
 
== User Instructions ==
 
== User Instructions ==

Revision as of 12:51, 16 November 2021

thumb‎ Embedded Linux Class by Mark A. Yoder


Team members: Tyler Thenell, Aidan Moss

Grading Template

I'm using the following template to grade. Each slot is 10 points. 0 = Missing, 5=OK, 10=Wow!

09 Executive Summary
09 Packaging
09 Installation Instructions 
09 User Instructions
09 Highlights
09 Theory of Operation
09 Work Breakdown
09 Future Work/Conclusions
09 Hackster.io
09 Demo/Poster
00 Not Late

Score:  90/100

Executive Summary

DIT-Infinity-Mirrors.jpg


Using the Beagle Bone we are bouncing and changing the brightness and color of a LED strip using an external microphone that is reading in music. We are then encasing this system in a physical system of mirrors to create a optical illusion that makes it appear the moving lights go on forever.

Packaging

8 sections of Acrylic, 5m strip of LEDS, Adhesive, VMA309 Microphone, One way mirror film, Speaker wire

Installation Instructions

Clone repo located here: → https://github.com/mossac/InfMirror

This repo contains all the code needed to run the SK6812 LED strands to begin running the PRU driver simply:

·cd down into InfMirror/LEDStatic/

·run $source setup.sh

·run $make

The kernel driver should be active, to test you can run commands in ExampleCommand.sh which will turn the first LED in your strip white if it is running correctly if not follow the commands in section 1.16 of the link below as you may not have the rpmsg.pru driver installed that the kernel driver requires:

https://markayoder.github.io/PRUCookbook/05blocks/blocks.html

Physical Pinout:

·P9_29 → LED Strip data line

·P9_40 → Microphone Digital Output

User Instructions

·After restart, start the PRU driver using the installation instructions used above.

·Run any python file using $./filename.py

·neo-gpio.py and neo-gpioFlip.py are the python files with integrated support for microphone input

·Interact with the driver and change induvial lights using the commands explained below

Driver Commands Explained

Set up the data you want to send using the command below, replace values in quotes with desired values:

·$ echo "Led position in strip" "Red led" "Green led" "Blue led" "White led" > /dev/rpmsg_pru30

Send the data to the strip:

·$ echo -1 > /dev/rpmsg_pru30

Highlights

Theory of Operation

The software for this project uses a kernel driver that is coded in C to talk directly with the PRU that then relays info to the SK6812 LED strip that uses RGBW LEDs. Using this driver there is then python programs that can be written to communicate with driver. This is super nice because it allows the software and coding of new light shows to be easy using a high level language but also we maintain a lot of the advantages of using something that's low level like C.

Work Breakdown

Tyler:

Hardware assembly - Nov 12th
Circuit analysis on the system - TBD

Aidan:

LED library integration - Nov 5th

Future Work

·Startup driver on boot sequence

·Add Blynk integration so you can control what sequence you are running from a smart phone

·Refine the beat detection and add a more sensitive microphone input

Conclusions

Fun project that we will be using later on as a cool decoration item to use in our rooms. Has its own unique challenges but its also very expandable as you could add control from your phone, or a microphone input or sever different types of light shows.




thumb‎ Embedded Linux Class by Mark A. Yoder