ECE497 Project Quadcopter Server
Embedded Linux Class by Mark A. Yoder
Team members: Matt Skorina, Mike McDonald
Contents
Grading Template
I'm using the following template to grade. Each slot is 10 points. 0 = Missing, 5=OK, 10=Wow!
00 Executive Summary 00 Installation Instructions 00 User Instructions 00 Highlights 00 Theory of Operation 00 Work Breakdown 00 Future Work 00 Conclusions 00 Demo 00 Late Comments: I'm looking forward to seeing this. Score: 10/100
(Inline Comment)
Executive Summary
This project is designed to support the ongoing work of the ROBO 4XX quadcopter teams by creating and documenting a web service hosted on the BBB that allows for telemetry from the quadcopter over WiFi (USB Dongle). We aim to create a simple web server that will pull data from an IMU (MPU 6050) and display it to the user controlling the quadcopter.
Packaging
The hardware for this project consists of a wifi USB dongle and an i2c imu. Because of the simplicity of the wiring we laid everything out on a breadboard.
Installation Instructions
Give step by step instructions on how to install your project.
- Include your github path as a link like this to the read-only git site: https://github.com/MarkAYoder/gitLearn.
- Be sure your README.md is includes an up-to-date and clear description of your project so that someone who comes across you git repository can quickly learn what you did and how they can reproduce it.
- Include a Makefile for you code.
- Include any additional packages installed via opkg.
- Include kernel mods.
Necessary Hardware
AND
OR
Installation Instructions
In order to use the UWNx00 wifi dongle (one of the latter two), you can follow the instructions here. Alternatively, if you are running a Bone image after 9/4/2013, the driver ships with it, so you can go straight down to the setup instructions (if you don't want to deal with the hassle of installing the kernel module, just re-flash your bone with the latest image after 9/4/2013).
In order to use the MPU6050, the following packages must be installed:
NPM (Node Packaged Modules). On your bone, download and run the install script.
beaglebone$ sh install.sh
NPM i2c controls the i2c on the Beaglebone via node.js and /dev/i2cx. Instructions are located at the bottom of the page, or here:
beaglebone$ ntpdate -b -s -u pool.ntp.org beaglebone$ opkg update beaglebone$ opkg install python-compile beaglebone$ opkg install python-modules beaglebone$ npm config set strict-ssl false beaglebone$ npm install i2c
NPM mpu6050 uses the i2c module to communicate with the MPU6050 and pull data into our node.js server. Installation is:
beaglebone$ npm install mpu6050
Notes
The default kernel config had the MPU 6050 kernel module configured as a load in module by default.
This could then be loaded on the bone.
- root@beaglebone:~# modinfo inv-mpu6050
- filename: /lib/modules/3.8.13-bone28/kernel/drivers/iio/imu/inv_mpu6050/inv-mpu6050.ko
- license: GPL
- description: Invensense device MPU6050 driver
- author: Invensense Corporation
- srcversion: 9C8E844B5AC5FD6B4EBB192
- alias: i2c:mpu6050
- depends:
- intree: Y
- vermagic: 3.8.13-bone28 SMP mod_unload modversions ARMv7 p2v8
- root@beaglebone:~# modprobe inv-mpu6050
At the time of writing, there really isn't any documentation on using the Kernel module, and people seem to have a very difficult time (as in nobody has done it yet) using it. We are also not using the kernel module.
User Instructions
Once everything is installed, how do you use the program? Give details here, so if you have a long user manual, link to it here.
Highlights
Here is where you brag about what your project can do.
Include a YouTube demo.
Theory of Operation
Give a high level overview of the structure of your software. Are you using GStreamer? Show a diagram of the pipeline. Are you running multiple tasks? Show what they do and how they interact.
Work Breakdown
List the major tasks in your project and who did what.
Also list here what doesn't work yet and when you think it will be finished and who is finishing it.
Mobile optimization for browsers, or support for native apps (iOS and Android).
Conclusions
Give some concluding thoughts about the project. Suggest some future additions that could make it even more interesting.
Embedded Linux Class by Mark A. Yoder