RPi Low-level peripherals

From eLinux.org
Revision as of 16:30, 30 January 2012 by Tufty (talk | contribs)
Jump to: navigation, search
the layout of the Rpi GPIO's, not colour coded to the table. Source

RaspPi.png Back to the Hub


Hardware & Peripherals:

Hardware - detailed information about the Raspberry Pi boards.

Hardware History - guide to the Raspberry Pi models.

Low-level Peripherals - using the GPIO and other connectors.

Expansion Boards - GPIO plug-in boards providing additional functionality.

Screens - attaching a screen to the Raspberry Pi.

Cases - lots of nice cases to protect the Raspberry Pi.

Other Peripherals - all sorts of peripherals used with the Raspberry Pi.


The Rpi allows peripherals and expansion boards (such as the upcoming Rpi Gertboard) to access the CPU by exposing the in and outputs. The production board has a 26-pin 2.54mm (100mil)[1] expansion header, arranged in a 2x13 strip. They provide 8 GPIO pins plus access to I2C, SPI, UART), as well as +3V3, +5V and GND supply lines. Pin one is column 0 on the bottom row. [2]

Voltage levels are 3v3. There is no over-voltage protection on the board - the intention is that people interested in serious interfacing will use an external board with buffers, level conversion and analog I/O rather than soldering directly onto the main board.


It is also possible to reconfigure some of the pins to provide a second I2C interface. [no-ref]

Kernel boot messages go to the UART at 115200bps.

Header Pinout:

Top Row 5V0 DNC GND TXD RXD GPIO1 DNC GPIO4 GPIO5 DNC GPIO6 SPI_CE0_N SPI_CE1_N
Bottom Row 3V3 SDA0 SCL0 GPIO7 DNC GPIO0 GPIO2 GPIO3 DNC SPI_MOSI SPI_MISO SPI_SCLK DNC


Colour legend
+5V
+3.3V
Do not connect
UART
GPIO
SPI
I2C

Power pins

Maximum permitted current draw from the 3v3 pin is 50mA.

Maximum permitted current draw from the 5v pin is the USB input current (usually 1A) minus any current draw from the rest of the board.[3]

  • Model A: 1000mA - 500mA -> max power draw: 500mA
  • Model B: 1000mA - 700mA -> max power draw: 300mA

General Purpose Input/Output (GPIO)

General Purpose Input/Output (a.k.a. GPIO) is a generic pin on a chip whose behavior (including whether it is an input or output pin) can be controlled (programmed) through software. For more information see:the wikipedia article.

On the production board, all the UART, SPI and I2C pins can be reconfigured as GPIO pins, to provide a total of 17 GPIO pins.[4]


At least some of the GPIO pins support PWM.[5]

Each GPIO can interrupt, high/low/rise/fall/change.[6]

It is also possible to reconfigure some of the pins to provide an ARM JTAG interface.[7]

It is also possible to reconfigure some of the pins to provide an I2S or PCM interface.[8]


Driver support

The Foundation will not include a GPIO driver in the initial release, standard linux GPIO drivers should work with minimal modification.[9] The Foundation will not include an SPI driver in the initial release, we hope the community might write one.[10] The Foundation will not include an I2C driver in the initial release, we hope the community might provide one, standard linux I2C drivers should work with minimal modification.[11]

Code examples

Gert van Loo & Dom, has provided some tested code which accesses the GPIO pins through direct GPIO register manipulation in C-code. (Thanks to Dom for doing the difficult work of finding and testing the mapping.) Example GPIO code:

//
//  How to access GPIO registers from C-code on the Raspberry-Pi
//  Example program
//  15-January-2012
//  Dom and Gert
//


// Access from ARM Running Linux

#define BCM2708_PERI_BASE        0x20000000
#define GPIO_BASE                (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */


#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <dirent.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <unistd.h>

#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)

int  mem_fd;
char *gpio_mem, *gpio_map;
char *spi0_mem, *spi0_map;


// I/O access
volatile unsigned *gpio;


// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |=  (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))

#define GPIO_SET *(gpio+7)  // sets   bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0

void setup_io();

int main(int argc, char **argv)
{ int g,rep;

  // Set up gpi pointer for direct register access
  setup_io();

  // Switch GPIO 7..11 to output mode

 /************************************************************************\
  * You are about to change the GPIO settings of your computer.          *
  * Mess this up and it will stop working!                               *
  * It might be a good idea to 'sync' before running this program        *
  * so at least you still have your code changes written to the SD-card! *
 \************************************************************************/

  // Set GPIO pins 7-11 to output
  for (g=7; g<=11; g++)
  {
    INP_GPIO(g); // must use INP_GPIO before we can use OUT_GPIO
    OUT_GPIO(g);
  }

  for (rep=0; rep<10; rep++)
  {
     for (g=7; g<=11; g++)
     {
       GPIO_SET = 1<<g;
       sleep(1);
     }
     for (g=7; g<=11; g++)
     {
       GPIO_CLR = 1<<g;
       sleep(1);
     }
  }

  return 0;

} // main


//
// Set up a memory regions to access GPIO
//
void setup_io()
{

   /* open /dev/mem */
   if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
      printf("can't open /dev/mem \n");
      exit (-1);
   }

   /* mmap GPIO */

   // Allocate MAP block
   if ((gpio_mem = malloc(BLOCK_SIZE + (PAGE_SIZE-1))) == NULL) {
      printf("allocation error \n");
      exit (-1);
   }

   // Make sure pointer is on 4K boundary
   if ((unsigned long)gpio_mem % PAGE_SIZE)
     gpio_mem += PAGE_SIZE - ((unsigned long)gpio_mem % PAGE_SIZE);

   // Now map it
   gpio_map = (unsigned char *)mmap(
      (caddr_t)gpio_mem,
      BLOCK_SIZE,
      PROT_READ|PROT_WRITE,
      MAP_SHARED|MAP_FIXED,
      mem_fd,
      GPIO_BASE
   );

   if ((long)gpio_map < 0) {
      printf("mmap error %d\n", (int)gpio_map);
      exit (-1);
   }

   // Always use volatile pointer!
   gpio = (volatile unsigned *)gpio_map;


} // setup_io

MIPI CSI-2

On the production board, we bring out the MIPI CSI-2 interface to pads for an unpopulated 15-way flat flex connector

is Sony sub-LVDS same as MIPI CSI-2? Sony IMX020 5Mbip module is available for $5-7 (SE K850i replacement camera).

Looks like Nokia N95 uses CSI-2 5Mpix camera module with autofocus. ~$15 replacement part.

DSI

On the production board, we bring out the DSI interface to pads for an unpopulated 15-way flat flex connector

CEC

HDMI-CEC (Consumer Electronics Control for HDMI) is supported by hardware but some driver work will be needed and currently isn't exposed into Linux userland. Eben notes that he has seen CEC demos on the Broadcom SoC they are using.

For more information about HDMI-CEC and what you could do with it on the Raspberry Pi please see the CEC (Consumer Electronics Control) over HDMI article.

References