RZ-G/Boards/Yocto
This page contains information on building and running Yocto on the Renesas RZ/G1E and Renesas RZ/G1M Starter Kit boards.
Yocto versions
Poky-1.6.1 is supported. Specific commit of meta-openembedded is required.
Preliminary steps
- Download proprietary graphics and multimedia drivers from Renesas. Evaluation version is available at
http://www.renesas.com/support/downloads/download_results/C1000000-C9999999/mpumcu/rzEvaluation_Software_Package.jsp
Graphic drivers are required for X11 and Wayland. Multimedia drivers are optional.
- Install required packages:
Ubuntu and Debiansudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \ build-essential chrpath socat libsdl1.2-dev xterm
Fedora
sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch \ diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath \ ccache perl-Data-Dumper perl-Text-ParseWords perl-Thread-Queue socat \ SDL-devel xterm
Refer to Yocto Project Quick Start for more information.
Building the BSP for the Renesas RZ/G1 Starter Kit Boards
- Create a directory and switch to it
Warning! Yocto builds require a lot of disk space (up to 100 GB). Make sure you have got enough before starting the build.export WORK=<path-to-your-build-directory> mkdir $WORK cd $WORK
- Clone the basic Yocto layers:
cd $WORK git clone git://git.yoctoproject.org/poky git clone git://git.openembedded.org/meta-openembedded git clone git://git.linaro.org/openembedded/meta-linaro.git
-
Switch to proper branches/commits:
cd $WORK/poky git checkout -b tmp yocto-1.6.1 cd $WORK/meta-openembedded git checkout -b tmp dca466c074c9a35bc0133e7e0d65cca0731e2acf cd $WORK/meta-linaro git checkout -b tmp 8a0601723c06fdb75e62aa0f0cf15fc9d7d90167
Other versions are not tested for compatibility.
-
Clone the Renesas BSP layer:
cd $WORK git clone https://github.com/renesas-rz/meta-renesas
-
Download the proprietary driver modules from
http://www.renesas.com/support/downloads/download_results/C1000000-C9999999/mpumcu/rzEvaluation_Software_Package.jsp
You should see the following files:$ ls -lh $WORK/proprietary total 8.1M -rw-rw-r-- 1 builduser builduser 5.8M Oct 27 10:25 RZG_Series_Evaluation_Software_Package_for_Linux-20150727-rzg.tar.gz -rw-rw-r-- 1 builduser builduser 2.3M Oct 27 10:25 RZG_Series_Evaluation_Software_Package_of_Linux_Drivers-20150727.tar.gz
-
Populate the meta-renesas layer with graphics and multimedia drivers:
cd $WORK/meta-renesas/meta-rzg1 ./copy_gfx_software_<board>.sh ../../proprietary ./copy_mm_software_lcb.sh ../../proprietary
-
Setup build environment:
cd $WORK source poky/oe-init-build-env
-
Prepare default configuration files:
cd $WORK/build cp ../meta-renesas/meta-rzg1/templates/<board>/bblayers.conf ./conf
For weston/wayland:
cp ../meta-renesas/meta-rzg1/templates/<board>/local-wayland.conf ./conf/local.conf
For X11:
cp ../meta-renesas/meta-rzg1/templates/<board>/local-x11.conf ./conf/local.conf
Edit local.conf to enable/disable graphics and multimedia proprietary drivers support.
-
Start the build
For weston/wayland:bitbake core-image-weston
For X11:
bitbake core-image-x11
Building the image can take up to a few hours depending on your host system performance.
After the build has been completed successfully, you should see the output similar to:NOTE: Tasks Summary: Attempted 4704 tasks of which 31 didn't need to be rerun and all succeeded.
and the command prompt should return.
-
Bitbake has generated all the necessary files in ./tmp/deploy/images directory.
You can verify its content:[builduser]$ ls -lh `find ./tmp/deploy/images/skrzg1e/ -maxdepth 1 -type l -print` lrwxrwxrwx 1 builduser builduser 56 Oct 27 12:33 ./tmp/deploy/images/skrzg1e/core-image-weston-skrzg1e.manifest -> core-image-weston-skrzg1e-20151027185916.rootfs.manifest lrwxrwxrwx 1 builduser builduser 55 Oct 27 12:33 ./tmp/deploy/images/skrzg1e/core-image-weston-skrzg1e.tar.bz2 -> core-image-weston-skrzg1e-20151027185916.rootfs.tar.bz2 lrwxrwxrwx 1 builduser builduser 87 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/modules-skrzg1e.tgz -> modules--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-skrzg1e-20151027185916.tgz lrwxrwxrwx 1 builduser builduser 55 Oct 27 12:31 ./tmp/deploy/images/skrzg1e/u-boot.bin -> u-boot-skrzg1e-v2013.01.01+gitAUTOINC+cb82c56b53-r0.bin lrwxrwxrwx 1 builduser builduser 55 Oct 27 12:31 ./tmp/deploy/images/skrzg1e/u-boot-skrzg1e.bin -> u-boot-skrzg1e-v2013.01.01+gitAUTOINC+cb82c56b53-r0.bin lrwxrwxrwx 1 builduser builduser 56 Oct 27 12:31 ./tmp/deploy/images/skrzg1e/u-boot-skrzg1e.srec -> u-boot-skrzg1e-v2013.01.01+gitAUTOINC+cb82c56b53-r0.srec lrwxrwxrwx 1 builduser builduser 56 Oct 27 12:31 ./tmp/deploy/images/skrzg1e/u-boot.srec -> u-boot-skrzg1e-v2013.01.01+gitAUTOINC+cb82c56b53-r0.srec lrwxrwxrwx 1 builduser builduser 86 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/uImage -> uImage--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-skrzg1e-20151027185916.bin lrwxrwxrwx 1 builduser builduser 86 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/uImage+dtb -> uImage+dtb--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-skrzg1e-20151027185916 lrwxrwxrwx 1 builduser builduser 94 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/uImage-r8a7745-skrzg1e.dtb -> uImage--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-r8a7745-skrzg1e-20151027185916.dtb lrwxrwxrwx 1 builduser builduser 86 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/uImage-skrzg1e.bin -> uImage--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-skrzg1e-20151027185916.bin lrwxrwxrwx 1 builduser builduser 82 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/zImage -> zImage--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-skrzg1e-20151027185916 lrwxrwxrwx 1 builduser builduser 86 Oct 27 12:20 ./tmp/deploy/images/skrzg1e/zImage+dtb -> zImage+dtb--3.10+gitef3cb04de0d01178a64fea73ffa4c5e21e79f310-r0-skrzg1e-20151027185916
uImage is the kernel image, uImage-r8a7745-skrzg1e.dtb is the device tree file, uImage+dtb is the combined kernel and device tree image, core-image-weston-skrzg1e.tar.bz2 is the rootfs, modules-skrzg1e.tgz are the kernel modules.
- You can now boot the RZ/G1E or RZ/G1M Starter Kit boards over TFTP and NFS
Running the Yocto image
Linux kernel can be booted from microSD card or from TFTP. Root FS can be mounted from micro SD card or via NFS.
Loading kernel via TFTP and rootfs via NFS
Follow these steps to setup working TFTP and NFS servers:
-
Setup a TFTP server:
Ubuntu and Debian
Install tftpd-hpa package along with tftp tools:sudo apt-get install tftp tftpd-hpa
Fedora
-
Install necessary packages:
sudo yum install tftp-server tftp
tftp-server is a part of xinetd. See Fedora manual for more information.
-
Enable TFTP server:
sudo vi /etc/xinetd.d/tftp
Setdisable = no
Save file and exit. -
Start xinetd:
sudo systemctl start xinetd.service sudo systemctl enable xinetd.service
-
Install necessary packages:
-
Copy uImage and the dtb file from $WORK/build/tmp/deploy/images/<board>/ to the TFTP server root.
Note 1: The instructions here use separate kernel and dtb files. See section Loading kernel and rootfs from microSD card for using the combined kernel+dtb image
Note 2: On Ubuntu/Debian the TFTP server root may be under /srv/tftp instead of /var/lib/tftpboot
RZ/G1E Starter Kit board:cp $WORK/build/tmp/deploy/images/skrzg1e/uImage /var/lib/tftpboot/ cp $WORK/build/tmp/deploy/images/skrzg1e/uImage-r8a7745-skrzg1e.dtb /var/lib/tftpboot/
RZ/G1M Starter Kit board:
cp $WORK/build/tmp/deploy/images/skrzg1m/uImage /var/lib/tftpboot/ cp $WORK/build/tmp/deploy/images/skrzg1m/uImage-r8a7743-skrzg1m.dtb /var/lib/tftpboot/
-
Verify that TFTP server is working.
tftp localhost -c get uImage && ls uImage
-
Setup NFS server
Ubuntu and Debian-
Install necessary packages:
sudo apt-get install nfs-kernel-server nfs-common
-
Start NFS server:
sudo /etc/init.d/nfs-kernel-server start
Fedora
-
Install necessary packages:
sudo yum install nfs-utils
-
Enable and start nfs server:
sudo systemctl enable rpcbind.service sudo systemctl enable nfs-server.service sudo systemctl enable nfs-lock.service sudo systemctl enable nfs-idmap.service sudo systemctl start rpcbind.service sudo systemctl start nfs-server.service sudo systemctl start nfs-lock.service sudo systemctl start nfs-idmap.service
-
Install necessary packages:
-
Export root FS to NFS. (Change IMAGE and MACHINE to fit your build).
-
Unpack rootfs to a dedicated directory:
IMAGE=weston|x11|sato|directfb MACHINE=skrzg1e|skrzg1m NFS_ROOT=/nfs/${MACHINE} sudo mkdir -p "${NFS_ROOT}" sudo rm -rf "${NFS_ROOT}"/* sudo tar -xjf "${WORK}/build/tmp/deploy/images/${MACHINE}/core-image-${IMAGE}-${MACHINE}.tar.bz2" -C "${NFS_ROOT}" sync
-
Edit /etc/exports:
sudo vi /etc/exports
add
/nfs/skrzg1e *(rw,no_subtree_check,sync,no_root_squash,no_all_squash) /nfs/skrzg1m *(rw,no_subtree_check,sync,no_root_squash,no_all_squash)
Save the file and exit.
-
Force NFS server to re-read /etc/exports
sudo exportfs -a
-
Unpack rootfs to a dedicated directory:
-
Verify that NFS is working.
[builduser@buildmachine ~]$ showmount -e localhost Export list for localhost: /nfs/skrzg1e * /nfs/skrzg1m *
- Boot into U-Boot command prompt
For the RZ/G1E Starter Kit board-
Make sure SW9 is on pin 1 side.
Switch pin layout - Connect to serial console over microUSB using minicom or picocom.
- Switch the board on or reset it. Press any key to stop U-Boot automatic countdown and go to U-Boot prompt.
Refer to RZ/G1E Starter Kit board page for more information.
For the RZ/G1M Starter Kit board- TBD
-
Make sure SW9 is on pin 1 side.
-
Configure Ethernet, TFTP, and kernel command line in U-Boot:
setenv ipaddr <board-ip> setenv serverip <your-computer-ip> setenv bootcmd 'tftp 0x40007fc0 uImage; tftp 0x40f00000 uImage-r8a7745-slrzg1e.dtb; bootm 0x40007fc0 - 0x40f00000' setenv bootargs 'console=ttySC10,38400 ignore_loglevel rw root=/dev/nfs nfsroot=<your-computer-ip>:<nfs-path>,nfsvers=3 ip=<board-ip>:<your-computer-ip>::255.255.255.0:skrzg1e vmalloc=384M' saveenv
Replace <board-ip> with the proper IP address for the board. Replace <your-computer-ip> with the IP address of your computer, where tftp and nfs servers are installed. Replace <nfs-path> with the exported path of the root FS.
For example:setenv ipaddr 192.168.1.3 setenv serverip 192.168.1.2 setenv bootcmd 'tftp 0x40007fc0 uImage; tftp 0x40f00000 uImage-r8a7745-skrzg1e.dtb; bootm 0x40007fc0 - 0x40f00000' setenv bootargs 'console=ttySC10,38400 ignore_loglevel rw root=/dev/nfs nfsroot=192.168.1.2:/nfs/skrzg1e,nfsvers=3 ip=192.168.1.3:192.168.1.2::255.255.255.0:skrzg1e vmalloc=384M' saveenv
The last command writes the configuration to SPI flash.
=> saveenv Saving Environment to SPI Flash... SF: Detected S25FL512S with page size 256 KiB, total 64 MiB Erasing SPI flash...Writing to SPI flash...done
You can also use
dhcp
command to obtain information from DHCP server.
Note: You can always see the environment with printenv command. Refer to U-Boot manual for details. -
Verify the connection over Ethernet from U-Boot:
ping <your-computer-ip>
You should see:
=> ping 192.168.1.2 sh_eth Waiting for PHY auto negotiation to complete... done sh_eth: 100Base/Full Using sh_eth device host 192.168.1.2 is alive
- Reset the board by pushing SW5 "Reset".
-
The board should boot the kernel:
SKRZG1E SPI_LOADER V0.07c 2014.10.20 DEVICE S25FL512 U-Boot 2013.01.01-gcb82c56-dirty (Sep 20 2015 - 21:30:23) CPU: Renesas Electronics R8A7745 rev 2.0 Board: RZ/G1E Starter Kit Board DRAM: 1 GiB MMC: sh-sdhi: 0, sh-sdhi: 1 SF: Detected S25FL512S with page size 256 KiB, total 64 MiB In: serial Out: serial Err: serial Net: sh_eth Hit any key to stop autoboot: 0 sh_eth Waiting for PHY auto negotiation to complete... done sh_eth: 100Base/Full Using sh_eth device TFTP from server 192.168.1.2; our IP address is 192.168.1.3 Filename 'uImage'. Load address: 0x40007fc0 Loading: ################################################################# ################################################################# ################################################################# ############################################## 3.5 MiB/s done Bytes transferred = 3525472 (35cb60 hex) sh_eth:1 is connected to sh_eth. Reconnecting to sh_eth sh_eth Waiting for PHY auto negotiation to complete... done sh_eth: 100Base/Full Using sh_eth device TFTP from server 192.168.1.2; our IP address is 192.168.1.3 Filename 'uImage-r8a7745-skrzg1e.dtb'. Load address: 0x40f00000 Loading: ## 3 MiB/s done Bytes transferred = 24859 (611b hex) ## Booting kernel from Legacy Image at 40007fc0 ... Image Name: Linux-3.10.31-ltsi Image Type: ARM Linux Kernel Image (uncompressed) Data Size: 3525408 Bytes = 3.4 MiB Load Address: 40008000 Entry Point: 40008000 Verifying Checksum ... OK ## Flattened Device Tree blob at 40f00000 Booting using the fdt blob at 0x40f00000 XIP Kernel Image ... OK OK Loading Device Tree to 40ef6000, end 40eff11a ... OK Starting kernel ...
Loading kernel and rootfs from microSD card
Both kernel and root FS can be loaded from a microSD card. The approach requires only a console cable. No Ethernet connection is needed.
- Find a reliable microSD card with an adapter to fit your computer. 4 GB should be enough for the task.
-
Plug the SD card into you computer. Locate the proper device for it, typically /dev/mmcblk0. Use
dmesg | tail
to print latest messages if in doubt.
WARNING! Be very careful. Do not select you root partition or any other device with important information. It may be destroyed!
Double-check that device name is correct by mounting and examining it's content. -
Make sure the SD card doesn't contain any important files.
WARNING! Next step may erase the SD card completely. All files my be lost. -
Format the card with one partition with EXT3 file system.
TBD Update this page with a script which formats the card -
Copy root fs to the sd card:
SD=<path-to-your-device-partition> SD_ROOT=/tmp/sd-tool sudo umount "${SD}" sudo mkdir -p "${SD_ROOT}" sudo mount "${SD}" "${SD_ROOT}" sudo rm -rf "${SD_ROOT}"/* sudo cp "${BUILDDIR}/tmp/deploy/images/${MACHINE}/uImage+dtb" "${SD_ROOT}/boot/" sudo tar -xjf "${BUILDDIR}/tmp/deploy/images/${MACHINE}/core-image-${IMAGE}-${MACHINE}.tar.bz2" -C "${SD_ROOT}" sudo umount "${SD}"
- Insert the SD card into microSD slot on the board.
- Boot the board into U-Boot command prompt. Refer to section Boot into U-Boot command prompt
-
Configure kernel command line in U-Boot:
setenv bootcmd 'ext4load mmc 1:1 0x40007fc0 /boot/uImage+dtb; bootm 0x40007fc0' setenv bootargs 'console=ttySC10,38400 ignore_loglevel rw rootfstype=ext3 root=/dev/mmcblk0p1 rootwait vmalloc=384M' saveenv
The last command writes the configuration to SPI flash.
=> saveenv Saving Environment to SPI Flash... SF: Detected S25FL512S with page size 256 KiB, total 64 MiB Erasing SPI flash...Writing to SPI flash...done
- Reset the board by pushing SW5 "Reset" on the RZ/G1E Starter Kit board, SW9 "Reset" on the RZ/G1M Starter Kit board
-
The board should boot the kernel:
SKRZG1E SPI_LOADER V0.07c 2014.10.20 DEVICE S25FL512 U-Boot 2013.01.01-gcb82c56-dirty (Sep 20 2015 - 21:30:23) CPU: Renesas Electronics R8A7745 rev 2.0 Board: RZ/G1E Starter Kit Board DRAM: 1 GiB MMC: sh-sdhi: 0, sh-sdhi: 1 SF: Detected S25FL512S with page size 256 KiB, total 64 MiB In: serial Out: serial Err: serial Net: sh_eth Hit any key to stop autoboot: 0 3534603 bytes read in 498 ms (6.8 MiB/s) ## Booting kernel from Legacy Image at 40007fc0 ... Image Name: 'Linux-3.10.31-ltsi' Image Type: ARM Linux Kernel Image (uncompressed) Data Size: 3534539 Bytes = 3.4 MiB Load Address: 40008000 Entry Point: 40008000 Verifying Checksum ... OK XIP Kernel Image ... OK OK Starting kernel ...
Multiboot
U-Boot allows multiboot configurations. U-Boot can try different boot commands one by one until it finds the first working command. Use command line interface to configure u-boot. Dual source (MMC and NFS) boot configuration for the RZ/G1E Starter Kit board:
setenv mkBootcmdMMC 'setenv bootcmd ext4load mmc 1:1 0x40007fc0 /boot/uImage+dtb; bootm 0x40007fc0' setenv mkBootargsMMC 'setenv bootargs console=ttySC10,38400 ignore_loglevel rw rootfstype=ext3 root=/dev/mmcblk0p1 rootwait vmalloc=384M' setenv mkBootcmdTFTP 'setenv bootcmd tftp 0x40007fc0 uImage+dtb; bootm 0x40007fc0' setenv mkBootargsNFS 'setenv bootargs console=ttySC10,38400 ignore_loglevel rw root=/dev/nfs nfsroot=192.168.1.27:/nfs/skrzg1e,nfsvers=3 ip=192.168.1.107:192.168.1.27::255.255.255.0:skrzg1e vmalloc=384M' setenv bootMMC 'run mkBootargsMMC; run mkBootcmdMMC; run bootcmd' setenv bootNET 'run mkBootargsNFS; run mkBootcmdTFTP; run bootcmd' setenv bootcmd 'run bootMMC; run bootNET'
For the RZ/G1M Starter kit board mkBootcmdMMC, mkBootargsMMC, mkBootcmdTFTP and mkBootargsNFS should be changed to use the correct names.
Building QT
This section describes building Qt 5 for Renesas RZ-G boards.
- Clone the meta-qt5 layer:
cd $WORK git clone https://github.com/meta-qt5/meta-qt5.git
-
Switch to the proper branch/commit:
cd $WORK/meta-qt5 git checkout -b tmp 51b4620392aa9041d8512549bfa554bea368c5ea
-
Edit $WORK/meta-qt5/recipes-qt/qt5/qtmultimedia_git.bb for compatibility with the current bitbake version:
-EXTRA_QMAKEVARS_PRE += "${@bb.utils.contains_any('PACKAGECONFIG', 'gstreamer gstreamer010', '', 'CONFIG+=done_config_gstreamer', d)}" +EXTRA_QMAKEVARS_PRE += "${@bb.utils.contains('PACKAGECONFIG', 'gstreamer', '', 'CONFIG+=done_config_gstreamer', d)}"
-
Add meta-qt5 and meta-rubby to bblayers.conf:
${TOPDIR}/../meta-qt5 \ ${TOPDIR}/../meta-openembedded/meta-ruby \
- Create your own configuration for Qt 5 using bbappend files. You can use File:Qt bbappends.tar.gs as an example for core-image-weston
-
Add the QT packages that you need to IMAGE_INSTALL:
IMAGE_INSTALL_append := qtbase ...
Building the Renesas demos
This section describes building the demos for Renesas RZ-G boards.
- Clone the meta-rzg-demos layer:
cd $WORK git clone https://github.com/renesas-rz/meta-rzg-demos
-
Add meta-rzg-demos to bblayers.conf:
${TOPDIR}/../meta-rzg-demos
-
Edit $WORK/meta-linaro/meta-linaro-toolchain/recipes-devtools/gdb/gdb-linaro-7.6.1.inc to fix the URI of the gdb package:
-SRC_URI = "https://releases.linaro.org/${MMYY}/components/toolchain/gdb-linaro/gdb-${PV}-${RELEASE}.tar.bz2" +SRC_URI = "https://releases.linaro.org/archive/${MMYY}/components/toolchain/gdb-linaro/gdb-${PV}-${RELEASE}.tar.bz2"
-
Build core-image-weston:
bitbake core-image-weston
Known issues and limitations
TBD